|
|
// Copyright 2017 The Gitea Authors. All rights reserved.
// Use of this source code is governed by a MIT-style
// license that can be found in the LICENSE file.
package models
import ( "bytes" "container/list" "crypto" "encoding/base64" "fmt" "hash" "io" "strings" "time"
"code.gitea.io/gitea/modules/git" "code.gitea.io/gitea/modules/log" "code.gitea.io/gitea/modules/setting" "code.gitea.io/gitea/modules/timeutil"
"github.com/keybase/go-crypto/openpgp" "github.com/keybase/go-crypto/openpgp/armor" "github.com/keybase/go-crypto/openpgp/packet" "xorm.io/xorm" )
// GPGKey represents a GPG key.
type GPGKey struct { ID int64 `xorm:"pk autoincr"` OwnerID int64 `xorm:"INDEX NOT NULL"` KeyID string `xorm:"INDEX CHAR(16) NOT NULL"` PrimaryKeyID string `xorm:"CHAR(16)"` Content string `xorm:"TEXT NOT NULL"` CreatedUnix timeutil.TimeStamp `xorm:"created"` ExpiredUnix timeutil.TimeStamp AddedUnix timeutil.TimeStamp SubsKey []*GPGKey `xorm:"-"` Emails []*EmailAddress CanSign bool CanEncryptComms bool CanEncryptStorage bool CanCertify bool }
// GPGKeyImport the original import of key
type GPGKeyImport struct { KeyID string `xorm:"pk CHAR(16) NOT NULL"` Content string `xorm:"TEXT NOT NULL"` }
// BeforeInsert will be invoked by XORM before inserting a record
func (key *GPGKey) BeforeInsert() { key.AddedUnix = timeutil.TimeStampNow() }
// AfterLoad is invoked from XORM after setting the values of all fields of this object.
func (key *GPGKey) AfterLoad(session *xorm.Session) { err := session.Where("primary_key_id=?", key.KeyID).Find(&key.SubsKey) if err != nil { log.Error("Find Sub GPGkeys[%s]: %v", key.KeyID, err) } }
// ListGPGKeys returns a list of public keys belongs to given user.
func ListGPGKeys(uid int64, listOptions ListOptions) ([]*GPGKey, error) { return listGPGKeys(x, uid, listOptions) }
func listGPGKeys(e Engine, uid int64, listOptions ListOptions) ([]*GPGKey, error) { sess := e.Table(&GPGKey{}).Where("owner_id=? AND primary_key_id=''", uid) if listOptions.Page != 0 { sess = listOptions.setSessionPagination(sess) }
keys := make([]*GPGKey, 0, 2) return keys, sess.Find(&keys) }
// GetGPGKeyByID returns public key by given ID.
func GetGPGKeyByID(keyID int64) (*GPGKey, error) { key := new(GPGKey) has, err := x.ID(keyID).Get(key) if err != nil { return nil, err } else if !has { return nil, ErrGPGKeyNotExist{keyID} } return key, nil }
// GetGPGKeysByKeyID returns public key by given ID.
func GetGPGKeysByKeyID(keyID string) ([]*GPGKey, error) { keys := make([]*GPGKey, 0, 1) return keys, x.Where("key_id=?", keyID).Find(&keys) }
// GetGPGImportByKeyID returns the import public armored key by given KeyID.
func GetGPGImportByKeyID(keyID string) (*GPGKeyImport, error) { key := new(GPGKeyImport) has, err := x.ID(keyID).Get(key) if err != nil { return nil, err } else if !has { return nil, ErrGPGKeyImportNotExist{keyID} } return key, nil }
// checkArmoredGPGKeyString checks if the given key string is a valid GPG armored key.
// The function returns the actual public key on success
func checkArmoredGPGKeyString(content string) (openpgp.EntityList, error) { list, err := openpgp.ReadArmoredKeyRing(strings.NewReader(content)) if err != nil { return nil, ErrGPGKeyParsing{err} } return list, nil }
// addGPGKey add key, import and subkeys to database
func addGPGKey(e Engine, key *GPGKey, content string) (err error) { // Add GPGKeyImport
if _, err = e.Insert(GPGKeyImport{ KeyID: key.KeyID, Content: content, }); err != nil { return err } // Save GPG primary key.
if _, err = e.Insert(key); err != nil { return err } // Save GPG subs key.
for _, subkey := range key.SubsKey { if err := addGPGSubKey(e, subkey); err != nil { return err } } return nil }
// addGPGSubKey add subkeys to database
func addGPGSubKey(e Engine, key *GPGKey) (err error) { // Save GPG primary key.
if _, err = e.Insert(key); err != nil { return err } // Save GPG subs key.
for _, subkey := range key.SubsKey { if err := addGPGSubKey(e, subkey); err != nil { return err } } return nil }
// AddGPGKey adds new public key to database.
func AddGPGKey(ownerID int64, content string) ([]*GPGKey, error) { ekeys, err := checkArmoredGPGKeyString(content) if err != nil { return nil, err } sess := x.NewSession() defer sess.Close() if err = sess.Begin(); err != nil { return nil, err } keys := make([]*GPGKey, 0, len(ekeys)) for _, ekey := range ekeys { // Key ID cannot be duplicated.
has, err := sess.Where("key_id=?", ekey.PrimaryKey.KeyIdString()). Get(new(GPGKey)) if err != nil { return nil, err } else if has { return nil, ErrGPGKeyIDAlreadyUsed{ekey.PrimaryKey.KeyIdString()} }
// Get DB session
key, err := parseGPGKey(ownerID, ekey) if err != nil { return nil, err }
if err = addGPGKey(sess, key, content); err != nil { return nil, err } keys = append(keys, key) } return keys, sess.Commit() }
// base64EncPubKey encode public key content to base 64
func base64EncPubKey(pubkey *packet.PublicKey) (string, error) { var w bytes.Buffer err := pubkey.Serialize(&w) if err != nil { return "", err } return base64.StdEncoding.EncodeToString(w.Bytes()), nil }
// base64DecPubKey decode public key content from base 64
func base64DecPubKey(content string) (*packet.PublicKey, error) { b, err := readerFromBase64(content) if err != nil { return nil, err } // Read key
p, err := packet.Read(b) if err != nil { return nil, err } // Check type
pkey, ok := p.(*packet.PublicKey) if !ok { return nil, fmt.Errorf("key is not a public key") } return pkey, nil }
// GPGKeyToEntity retrieve the imported key and the traducted entity
func GPGKeyToEntity(k *GPGKey) (*openpgp.Entity, error) { impKey, err := GetGPGImportByKeyID(k.KeyID) if err != nil { return nil, err } keys, err := checkArmoredGPGKeyString(impKey.Content) if err != nil { return nil, err } return keys[0], err }
// parseSubGPGKey parse a sub Key
func parseSubGPGKey(ownerID int64, primaryID string, pubkey *packet.PublicKey, expiry time.Time) (*GPGKey, error) { content, err := base64EncPubKey(pubkey) if err != nil { return nil, err } return &GPGKey{ OwnerID: ownerID, KeyID: pubkey.KeyIdString(), PrimaryKeyID: primaryID, Content: content, CreatedUnix: timeutil.TimeStamp(pubkey.CreationTime.Unix()), ExpiredUnix: timeutil.TimeStamp(expiry.Unix()), CanSign: pubkey.CanSign(), CanEncryptComms: pubkey.PubKeyAlgo.CanEncrypt(), CanEncryptStorage: pubkey.PubKeyAlgo.CanEncrypt(), CanCertify: pubkey.PubKeyAlgo.CanSign(), }, nil }
// getExpiryTime extract the expire time of primary key based on sig
func getExpiryTime(e *openpgp.Entity) time.Time { expiry := time.Time{} // Extract self-sign for expire date based on : https://github.com/golang/crypto/blob/master/openpgp/keys.go#L165
var selfSig *packet.Signature for _, ident := range e.Identities { if selfSig == nil { selfSig = ident.SelfSignature } else if ident.SelfSignature.IsPrimaryId != nil && *ident.SelfSignature.IsPrimaryId { selfSig = ident.SelfSignature break } } if selfSig.KeyLifetimeSecs != nil { expiry = e.PrimaryKey.CreationTime.Add(time.Duration(*selfSig.KeyLifetimeSecs) * time.Second) } return expiry }
// parseGPGKey parse a PrimaryKey entity (primary key + subs keys + self-signature)
func parseGPGKey(ownerID int64, e *openpgp.Entity) (*GPGKey, error) { pubkey := e.PrimaryKey expiry := getExpiryTime(e)
// Parse Subkeys
subkeys := make([]*GPGKey, len(e.Subkeys)) for i, k := range e.Subkeys { subs, err := parseSubGPGKey(ownerID, pubkey.KeyIdString(), k.PublicKey, expiry) if err != nil { return nil, ErrGPGKeyParsing{ParseError: err} } subkeys[i] = subs }
// Check emails
userEmails, err := GetEmailAddresses(ownerID) if err != nil { return nil, err }
emails := make([]*EmailAddress, 0, len(e.Identities)) for _, ident := range e.Identities { if ident.Revocation != nil { continue } email := strings.ToLower(strings.TrimSpace(ident.UserId.Email)) for _, e := range userEmails { if e.Email == email { emails = append(emails, e) break } } }
// In the case no email as been found
if len(emails) == 0 { failedEmails := make([]string, 0, len(e.Identities)) for _, ident := range e.Identities { failedEmails = append(failedEmails, ident.UserId.Email) } return nil, ErrGPGNoEmailFound{failedEmails} }
content, err := base64EncPubKey(pubkey) if err != nil { return nil, err } return &GPGKey{ OwnerID: ownerID, KeyID: pubkey.KeyIdString(), PrimaryKeyID: "", Content: content, CreatedUnix: timeutil.TimeStamp(pubkey.CreationTime.Unix()), ExpiredUnix: timeutil.TimeStamp(expiry.Unix()), Emails: emails, SubsKey: subkeys, CanSign: pubkey.CanSign(), CanEncryptComms: pubkey.PubKeyAlgo.CanEncrypt(), CanEncryptStorage: pubkey.PubKeyAlgo.CanEncrypt(), CanCertify: pubkey.PubKeyAlgo.CanSign(), }, nil }
// deleteGPGKey does the actual key deletion
func deleteGPGKey(e *xorm.Session, keyID string) (int64, error) { if keyID == "" { return 0, fmt.Errorf("empty KeyId forbidden") // Should never happen but just to be sure
} // Delete imported key
n, err := e.Where("key_id=?", keyID).Delete(new(GPGKeyImport)) if err != nil { return n, err } return e.Where("key_id=?", keyID).Or("primary_key_id=?", keyID).Delete(new(GPGKey)) }
// DeleteGPGKey deletes GPG key information in database.
func DeleteGPGKey(doer *User, id int64) (err error) { key, err := GetGPGKeyByID(id) if err != nil { if IsErrGPGKeyNotExist(err) { return nil } return fmt.Errorf("GetPublicKeyByID: %v", err) }
// Check if user has access to delete this key.
if !doer.IsAdmin && doer.ID != key.OwnerID { return ErrGPGKeyAccessDenied{doer.ID, key.ID} }
sess := x.NewSession() defer sess.Close() if err = sess.Begin(); err != nil { return err }
if _, err = deleteGPGKey(sess, key.KeyID); err != nil { return err }
return sess.Commit() }
// CommitVerification represents a commit validation of signature
type CommitVerification struct { Verified bool Warning bool Reason string SigningUser *User CommittingUser *User SigningEmail string SigningKey *GPGKey TrustStatus string }
// SignCommit represents a commit with validation of signature.
type SignCommit struct { Verification *CommitVerification *UserCommit }
const ( // BadSignature is used as the reason when the signature has a KeyID that is in the db
// but no key that has that ID verifies the signature. This is a suspicious failure.
BadSignature = "gpg.error.probable_bad_signature" // BadDefaultSignature is used as the reason when the signature has a KeyID that matches the
// default Key but is not verified by the default key. This is a suspicious failure.
BadDefaultSignature = "gpg.error.probable_bad_default_signature" // NoKeyFound is used as the reason when no key can be found to verify the signature.
NoKeyFound = "gpg.error.no_gpg_keys_found" )
func readerFromBase64(s string) (io.Reader, error) { bs, err := base64.StdEncoding.DecodeString(s) if err != nil { return nil, err } return bytes.NewBuffer(bs), nil }
func populateHash(hashFunc crypto.Hash, msg []byte) (hash.Hash, error) { h := hashFunc.New() if _, err := h.Write(msg); err != nil { return nil, err } return h, nil }
// readArmoredSign read an armored signature block with the given type. https://sourcegraph.com/github.com/golang/crypto/-/blob/openpgp/read.go#L24:6-24:17
func readArmoredSign(r io.Reader) (body io.Reader, err error) { block, err := armor.Decode(r) if err != nil { return } if block.Type != openpgp.SignatureType { return nil, fmt.Errorf("expected '" + openpgp.SignatureType + "', got: " + block.Type) } return block.Body, nil }
func extractSignature(s string) (*packet.Signature, error) { r, err := readArmoredSign(strings.NewReader(s)) if err != nil { return nil, fmt.Errorf("Failed to read signature armor") } p, err := packet.Read(r) if err != nil { return nil, fmt.Errorf("Failed to read signature packet") } sig, ok := p.(*packet.Signature) if !ok { return nil, fmt.Errorf("Packet is not a signature") } return sig, nil }
func verifySign(s *packet.Signature, h hash.Hash, k *GPGKey) error { // Check if key can sign
if !k.CanSign { return fmt.Errorf("key can not sign") } // Decode key
pkey, err := base64DecPubKey(k.Content) if err != nil { return err } return pkey.VerifySignature(h, s) }
func hashAndVerify(sig *packet.Signature, payload string, k *GPGKey, committer, signer *User, email string) *CommitVerification { // Generating hash of commit
hash, err := populateHash(sig.Hash, []byte(payload)) if err != nil { // Skipping failed to generate hash
log.Error("PopulateHash: %v", err) return &CommitVerification{ CommittingUser: committer, Verified: false, Reason: "gpg.error.generate_hash", } }
if err := verifySign(sig, hash, k); err == nil { return &CommitVerification{ // Everything is ok
CommittingUser: committer, Verified: true, Reason: fmt.Sprintf("%s / %s", signer.Name, k.KeyID), SigningUser: signer, SigningKey: k, SigningEmail: email, } } return nil }
func hashAndVerifyWithSubKeys(sig *packet.Signature, payload string, k *GPGKey, committer, signer *User, email string) *CommitVerification { commitVerification := hashAndVerify(sig, payload, k, committer, signer, email) if commitVerification != nil { return commitVerification }
// And test also SubsKey
for _, sk := range k.SubsKey { commitVerification := hashAndVerify(sig, payload, sk, committer, signer, email) if commitVerification != nil { return commitVerification } } return nil }
func hashAndVerifyForKeyID(sig *packet.Signature, payload string, committer *User, keyID, name, email string) *CommitVerification { if keyID == "" { return nil } keys, err := GetGPGKeysByKeyID(keyID) if err != nil { log.Error("GetGPGKeysByKeyID: %v", err) return &CommitVerification{ CommittingUser: committer, Verified: false, Reason: "gpg.error.failed_retrieval_gpg_keys", } } if len(keys) == 0 { return nil } for _, key := range keys { var primaryKeys []*GPGKey if key.PrimaryKeyID != "" { primaryKeys, err = GetGPGKeysByKeyID(key.PrimaryKeyID) if err != nil { log.Error("GetGPGKeysByKeyID: %v", err) return &CommitVerification{ CommittingUser: committer, Verified: false, Reason: "gpg.error.failed_retrieval_gpg_keys", } } } activated := false if len(email) != 0 { for _, e := range key.Emails { if e.IsActivated && strings.EqualFold(e.Email, email) { activated = true email = e.Email break } } if !activated { for _, pkey := range primaryKeys { for _, e := range pkey.Emails { if e.IsActivated && strings.EqualFold(e.Email, email) { activated = true email = e.Email break } } if activated { break } } } } else { for _, e := range key.Emails { if e.IsActivated { activated = true email = e.Email break } } if !activated { for _, pkey := range primaryKeys { for _, e := range pkey.Emails { if e.IsActivated { activated = true email = e.Email break } } if activated { break } } } }
if !activated { continue } signer := &User{ Name: name, Email: email, } if key.OwnerID != 0 { owner, err := GetUserByID(key.OwnerID) if err == nil { signer = owner } else if !IsErrUserNotExist(err) { log.Error("Failed to GetUserByID: %d for key ID: %d (%s) %v", key.OwnerID, key.ID, key.KeyID, err) return &CommitVerification{ CommittingUser: committer, Verified: false, Reason: "gpg.error.no_committer_account", } } } commitVerification := hashAndVerifyWithSubKeys(sig, payload, key, committer, signer, email) if commitVerification != nil { return commitVerification } } // This is a bad situation ... We have a key id that is in our database but the signature doesn't match.
return &CommitVerification{ CommittingUser: committer, Verified: false, Warning: true, Reason: BadSignature, } }
// ParseCommitWithSignature check if signature is good against keystore.
func ParseCommitWithSignature(c *git.Commit) *CommitVerification { var committer *User if c.Committer != nil { var err error // Find Committer account
committer, err = GetUserByEmail(c.Committer.Email) // This finds the user by primary email or activated email so commit will not be valid if email is not
if err != nil { // Skipping not user for commiter
committer = &User{ Name: c.Committer.Name, Email: c.Committer.Email, } // We can expect this to often be an ErrUserNotExist. in the case
// it is not, however, it is important to log it.
if !IsErrUserNotExist(err) { log.Error("GetUserByEmail: %v", err) return &CommitVerification{ CommittingUser: committer, Verified: false, Reason: "gpg.error.no_committer_account", } }
} }
// If no signature just report the committer
if c.Signature == nil { return &CommitVerification{ CommittingUser: committer, Verified: false, // Default value
Reason: "gpg.error.not_signed_commit", // Default value
} }
// Parsing signature
sig, err := extractSignature(c.Signature.Signature) if err != nil { // Skipping failed to extract sign
log.Error("SignatureRead err: %v", err) return &CommitVerification{ CommittingUser: committer, Verified: false, Reason: "gpg.error.extract_sign", } }
keyID := "" if sig.IssuerKeyId != nil && (*sig.IssuerKeyId) != 0 { keyID = fmt.Sprintf("%X", *sig.IssuerKeyId) } if keyID == "" && sig.IssuerFingerprint != nil && len(sig.IssuerFingerprint) > 0 { keyID = fmt.Sprintf("%X", sig.IssuerFingerprint[12:20]) } defaultReason := NoKeyFound
// First check if the sig has a keyID and if so just look at that
if commitVerification := hashAndVerifyForKeyID( sig, c.Signature.Payload, committer, keyID, setting.AppName, ""); commitVerification != nil { if commitVerification.Reason == BadSignature { defaultReason = BadSignature } else { return commitVerification } }
// Now try to associate the signature with the committer, if present
if committer.ID != 0 { keys, err := ListGPGKeys(committer.ID, ListOptions{}) if err != nil { // Skipping failed to get gpg keys of user
log.Error("ListGPGKeys: %v", err) return &CommitVerification{ CommittingUser: committer, Verified: false, Reason: "gpg.error.failed_retrieval_gpg_keys", } }
for _, k := range keys { // Pre-check (& optimization) that emails attached to key can be attached to the commiter email and can validate
canValidate := false email := "" for _, e := range k.Emails { if e.IsActivated && strings.EqualFold(e.Email, c.Committer.Email) { canValidate = true email = e.Email break } } if !canValidate { continue // Skip this key
}
commitVerification := hashAndVerifyWithSubKeys(sig, c.Signature.Payload, k, committer, committer, email) if commitVerification != nil { return commitVerification } } }
if setting.Repository.Signing.SigningKey != "" && setting.Repository.Signing.SigningKey != "default" && setting.Repository.Signing.SigningKey != "none" { // OK we should try the default key
gpgSettings := git.GPGSettings{ Sign: true, KeyID: setting.Repository.Signing.SigningKey, Name: setting.Repository.Signing.SigningName, Email: setting.Repository.Signing.SigningEmail, } if err := gpgSettings.LoadPublicKeyContent(); err != nil { log.Error("Error getting default signing key: %s %v", gpgSettings.KeyID, err) } else if commitVerification := verifyWithGPGSettings(&gpgSettings, sig, c.Signature.Payload, committer, keyID); commitVerification != nil { if commitVerification.Reason == BadSignature { defaultReason = BadSignature } else { return commitVerification } } }
defaultGPGSettings, err := c.GetRepositoryDefaultPublicGPGKey(false) if err != nil { log.Error("Error getting default public gpg key: %v", err) } else if defaultGPGSettings == nil { log.Warn("Unable to get defaultGPGSettings for unattached commit: %s", c.ID.String()) } else if defaultGPGSettings.Sign { if commitVerification := verifyWithGPGSettings(defaultGPGSettings, sig, c.Signature.Payload, committer, keyID); commitVerification != nil { if commitVerification.Reason == BadSignature { defaultReason = BadSignature } else { return commitVerification } } }
return &CommitVerification{ // Default at this stage
CommittingUser: committer, Verified: false, Warning: defaultReason != NoKeyFound, Reason: defaultReason, SigningKey: &GPGKey{ KeyID: keyID, }, } }
func verifyWithGPGSettings(gpgSettings *git.GPGSettings, sig *packet.Signature, payload string, committer *User, keyID string) *CommitVerification { // First try to find the key in the db
if commitVerification := hashAndVerifyForKeyID(sig, payload, committer, gpgSettings.KeyID, gpgSettings.Name, gpgSettings.Email); commitVerification != nil { return commitVerification }
// Otherwise we have to parse the key
ekeys, err := checkArmoredGPGKeyString(gpgSettings.PublicKeyContent) if err != nil { log.Error("Unable to get default signing key: %v", err) return &CommitVerification{ CommittingUser: committer, Verified: false, Reason: "gpg.error.generate_hash", } } for _, ekey := range ekeys { pubkey := ekey.PrimaryKey content, err := base64EncPubKey(pubkey) if err != nil { return &CommitVerification{ CommittingUser: committer, Verified: false, Reason: "gpg.error.generate_hash", } } k := &GPGKey{ Content: content, CanSign: pubkey.CanSign(), KeyID: pubkey.KeyIdString(), } for _, subKey := range ekey.Subkeys { content, err := base64EncPubKey(subKey.PublicKey) if err != nil { return &CommitVerification{ CommittingUser: committer, Verified: false, Reason: "gpg.error.generate_hash", } } k.SubsKey = append(k.SubsKey, &GPGKey{ Content: content, CanSign: subKey.PublicKey.CanSign(), KeyID: subKey.PublicKey.KeyIdString(), }) } if commitVerification := hashAndVerifyWithSubKeys(sig, payload, k, committer, &User{ Name: gpgSettings.Name, Email: gpgSettings.Email, }, gpgSettings.Email); commitVerification != nil { return commitVerification } if keyID == k.KeyID { // This is a bad situation ... We have a key id that matches our default key but the signature doesn't match.
return &CommitVerification{ CommittingUser: committer, Verified: false, Warning: true, Reason: BadSignature, } } } return nil }
// ParseCommitsWithSignature checks if signaute of commits are corresponding to users gpg keys.
func ParseCommitsWithSignature(oldCommits *list.List, repository *Repository) *list.List { var ( newCommits = list.New() e = oldCommits.Front() ) keyMap := map[string]bool{}
for e != nil { c := e.Value.(UserCommit) signCommit := SignCommit{ UserCommit: &c, Verification: ParseCommitWithSignature(c.Commit), }
_ = CalculateTrustStatus(signCommit.Verification, repository, &keyMap)
newCommits.PushBack(signCommit) e = e.Next() } return newCommits }
// CalculateTrustStatus will calculate the TrustStatus for a commit verification within a repository
func CalculateTrustStatus(verification *CommitVerification, repository *Repository, keyMap *map[string]bool) (err error) { if !verification.Verified { return }
// There are several trust models in Gitea
trustModel := repository.GetTrustModel()
// In the Committer trust model a signature is trusted if it matches the committer
// - it doesn't matter if they're a collaborator, the owner, Gitea or Github
// NB: This model is commit verification only
if trustModel == CommitterTrustModel { // default to "unmatched"
verification.TrustStatus = "unmatched"
// We can only verify against users in our database but the default key will match
// against by email if it is not in the db.
if (verification.SigningUser.ID != 0 && verification.CommittingUser.ID == verification.SigningUser.ID) || (verification.SigningUser.ID == 0 && verification.CommittingUser.ID == 0 && verification.SigningUser.Email == verification.CommittingUser.Email) { verification.TrustStatus = "trusted" } return }
// Now we drop to the more nuanced trust models...
verification.TrustStatus = "trusted"
if verification.SigningUser.ID == 0 { // This commit is signed by the default key - but this key is not assigned to a user in the DB.
// However in the CollaboratorCommitterTrustModel we cannot mark this as trusted
// unless the default key matches the email of a non-user.
if trustModel == CollaboratorCommitterTrustModel && (verification.CommittingUser.ID != 0 || verification.SigningUser.Email != verification.CommittingUser.Email) { verification.TrustStatus = "untrusted" } return }
var isMember bool if keyMap != nil { var has bool isMember, has = (*keyMap)[verification.SigningKey.KeyID] if !has { isMember, err = repository.IsOwnerMemberCollaborator(verification.SigningUser.ID) (*keyMap)[verification.SigningKey.KeyID] = isMember } } else { isMember, err = repository.IsOwnerMemberCollaborator(verification.SigningUser.ID) }
if !isMember { verification.TrustStatus = "untrusted" if verification.CommittingUser.ID != verification.SigningUser.ID { // The committing user and the signing user are not the same
// This should be marked as questionable unless the signing user is a collaborator/team member etc.
verification.TrustStatus = "unmatched" } } else if trustModel == CollaboratorCommitterTrustModel && verification.CommittingUser.ID != verification.SigningUser.ID { // The committing user and the signing user are not the same and our trustmodel states that they must match
verification.TrustStatus = "unmatched" }
return }
|