Switch to keybase go-crypto (for some elliptic curve key) + test (#1925)

* Switch to keybase go-crypto (for some elliptic curve key) + test

* Use assert.NoError 

and add a little more context to failing test description

* Use assert.(No)Error everywhere 馃寛

and assert.Error in place of .Nil/.NotNil
release/v1.2
Antoine GIRARD 6 years ago committed by Lunny Xiao
parent 5e92b82ac6
commit 274149dd14

@ -19,9 +19,9 @@ import (
"code.gitea.io/gitea/modules/log"
"github.com/go-xorm/xorm"
"golang.org/x/crypto/openpgp"
"golang.org/x/crypto/openpgp/armor"
"golang.org/x/crypto/openpgp/packet"
"github.com/keybase/go-crypto/openpgp"
"github.com/keybase/go-crypto/openpgp/armor"
"github.com/keybase/go-crypto/openpgp/packet"
)
// GPGKey represents a GPG key.

@ -43,7 +43,28 @@ MkM/fdpyc2hY7Dl/+qFmN5MG5yGmMpQcX+RNNR222ibNC1D3wg==
-----END PGP PUBLIC KEY BLOCK-----`
key, err := checkArmoredGPGKeyString(testGPGArmor)
assert.Nil(t, err, "Could not parse a valid GPG armored key", key)
assert.NoError(t, err, "Could not parse a valid GPG public armored rsa key", key)
//TODO verify value of key
}
func TestCheckArmoredbrainpoolP256r1GPGKeyString(t *testing.T) {
testGPGArmor := `-----BEGIN PGP PUBLIC KEY BLOCK-----
Version: GnuPG v2
mFMEV6HwkhMJKyQDAwIIAQEHAgMEUsvJO/j5dFMRRj67qeZC9fSKBsGZdOHRj2+6
8wssmbUuLTfT/ZjIbExETyY8hFnURRGpD2Ifyz0cKjXcbXfJtrQTRm9vYmFyIDxm
b29AYmFyLmRlPoh/BBMTCAAnBQJZOsDIAhsDBQkJZgGABQsJCAcCBhUICQoLAgQW
AgMBAh4BAheAAAoJEGuJTd/DBMzmNVQA/2beUrv1yU4gyvCiPDEm3pK42cSfaL5D
muCtPCUg9hlWAP4yq6M78NW8STfsXgn6oeziMYiHSTmV14nOamLuwwDWM7hXBFeh
8JISCSskAwMCCAEBBwIDBG3A+XfINAZp1CTse2mRNgeUE5DbUtEpO8ALXKA1UQsQ
DLKq27b7zTgawgXIGUGP6mWsJ5oH7MNAJ/uKTsYmX40DAQgHiGcEGBMIAA8FAleh
8JICGwwFCQlmAYAACgkQa4lN38MEzOZwKAD/QKyerAgcvzzLaqvtap3XvpYcw9tc
OyjLLnFQiVmq7kEA/0z0CQe3ZQiQIq5zrs7Nh1XRkFAo8GlU/SGC9XFFi722
=ZiSe
-----END PGP PUBLIC KEY BLOCK-----`
key, err := checkArmoredGPGKeyString(testGPGArmor)
assert.NoError(t, err, "Could not parse a valid GPG public armored brainpoolP256r1 key", key)
//TODO verify value of key
}
@ -79,11 +100,11 @@ MkM/fdpyc2hY7Dl/+qFmN5MG5yGmMpQcX+RNNR222ibNC1D3wg==
=i9b7
-----END PGP PUBLIC KEY BLOCK-----`
ekey, err := checkArmoredGPGKeyString(testGPGArmor)
assert.Nil(t, err, "Could not parse a valid GPG armored key", ekey)
assert.NoError(t, err, "Could not parse a valid GPG armored key", ekey)
pubkey := ekey.PrimaryKey
content, err := base64EncPubKey(pubkey)
assert.Nil(t, err, "Could not base64 encode a valid PublicKey content", ekey)
assert.NoError(t, err, "Could not base64 encode a valid PublicKey content", ekey)
key := &GPGKey{
KeyID: pubkey.KeyIdString(),
@ -144,21 +165,21 @@ Unknown GPG key with good email
`
//Reading Sign
goodSig, err := extractSignature(testGoodSigArmor)
assert.Nil(t, err, "Could not parse a valid GPG armored signature", testGoodSigArmor)
assert.NoError(t, err, "Could not parse a valid GPG armored signature", testGoodSigArmor)
badSig, err := extractSignature(testBadSigArmor)
assert.Nil(t, err, "Could not parse a valid GPG armored signature", testBadSigArmor)
assert.NoError(t, err, "Could not parse a valid GPG armored signature", testBadSigArmor)
//Generating hash of commit
goodHash, err := populateHash(goodSig.Hash, []byte(testGoodPayload))
assert.Nil(t, err, "Could not generate a valid hash of payload", testGoodPayload)
assert.NoError(t, err, "Could not generate a valid hash of payload", testGoodPayload)
badHash, err := populateHash(badSig.Hash, []byte(testBadPayload))
assert.Nil(t, err, "Could not generate a valid hash of payload", testBadPayload)
assert.NoError(t, err, "Could not generate a valid hash of payload", testBadPayload)
//Verify
err = verifySign(goodSig, goodHash, key)
assert.Nil(t, err, "Could not validate a good signature")
assert.NoError(t, err, "Could not validate a good signature")
err = verifySign(badSig, badHash, key)
assert.NotNil(t, err, "Validate a bad signature")
assert.Error(t, err, "Validate a bad signature")
err = verifySign(goodSig, goodHash, cannotsignkey)
assert.NotNil(t, err, "Validate a bad signature with a kay that can not sign")
assert.Error(t, err, "Validate a bad signature with a kay that can not sign")
}

@ -0,0 +1,27 @@
Copyright (c) 2009 The Go Authors. All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the
distribution.
* Neither the name of Google Inc. nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

@ -0,0 +1,22 @@
Additional IP Rights Grant (Patents)
"This implementation" means the copyrightable works distributed by
Google as part of the Go project.
Google hereby grants to You a perpetual, worldwide, non-exclusive,
no-charge, royalty-free, irrevocable (except as stated in this section)
patent license to make, have made, use, offer to sell, sell, import,
transfer and otherwise run, modify and propagate the contents of this
implementation of Go, where such license applies only to those patent
claims, both currently owned or controlled by Google and acquired in
the future, licensable by Google that are necessarily infringed by this
implementation of Go. This grant does not include claims that would be
infringed only as a consequence of further modification of this
implementation. If you or your agent or exclusive licensee institute or
order or agree to the institution of patent litigation against any
entity (including a cross-claim or counterclaim in a lawsuit) alleging
that this implementation of Go or any code incorporated within this
implementation of Go constitutes direct or contributory patent
infringement, or inducement of patent infringement, then any patent
rights granted to you under this License for this implementation of Go
shall terminate as of the date such litigation is filed.

@ -0,0 +1,134 @@
// Package brainpool implements Brainpool elliptic curves.
// Implementation of rcurves is from github.com/ebfe/brainpool
// Note that these curves are implemented with naive, non-constant time operations
// and are likely not suitable for enviroments where timing attacks are a concern.
package brainpool
import (
"crypto/elliptic"
"math/big"
"sync"
)
var (
once sync.Once
p256t1, p384t1, p512t1 *elliptic.CurveParams
p256r1, p384r1, p512r1 *rcurve
)
func initAll() {
initP256t1()
initP384t1()
initP512t1()
initP256r1()
initP384r1()
initP512r1()
}
func initP256t1() {
p256t1 = &elliptic.CurveParams{Name: "brainpoolP256t1"}
p256t1.P, _ = new(big.Int).SetString("A9FB57DBA1EEA9BC3E660A909D838D726E3BF623D52620282013481D1F6E5377", 16)
p256t1.N, _ = new(big.Int).SetString("A9FB57DBA1EEA9BC3E660A909D838D718C397AA3B561A6F7901E0E82974856A7", 16)
p256t1.B, _ = new(big.Int).SetString("662C61C430D84EA4FE66A7733D0B76B7BF93EBC4AF2F49256AE58101FEE92B04", 16)
p256t1.Gx, _ = new(big.Int).SetString("A3E8EB3CC1CFE7B7732213B23A656149AFA142C47AAFBC2B79A191562E1305F4", 16)
p256t1.Gy, _ = new(big.Int).SetString("2D996C823439C56D7F7B22E14644417E69BCB6DE39D027001DABE8F35B25C9BE", 16)
p256t1.BitSize = 256
}
func initP256r1() {
twisted := p256t1
params := &elliptic.CurveParams{
Name: "brainpoolP256r1",
P: twisted.P,
N: twisted.N,
BitSize: twisted.BitSize,
}
params.Gx, _ = new(big.Int).SetString("8BD2AEB9CB7E57CB2C4B482FFC81B7AFB9DE27E1E3BD23C23A4453BD9ACE3262", 16)
params.Gy, _ = new(big.Int).SetString("547EF835C3DAC4FD97F8461A14611DC9C27745132DED8E545C1D54C72F046997", 16)
z, _ := new(big.Int).SetString("3E2D4BD9597B58639AE7AA669CAB9837CF5CF20A2C852D10F655668DFC150EF0", 16)
p256r1 = newrcurve(twisted, params, z)
}
func initP384t1() {
p384t1 = &elliptic.CurveParams{Name: "brainpoolP384t1"}
p384t1.P, _ = new(big.Int).SetString("8CB91E82A3386D280F5D6F7E50E641DF152F7109ED5456B412B1DA197FB71123ACD3A729901D1A71874700133107EC53", 16)
p384t1.N, _ = new(big.Int).SetString("8CB91E82A3386D280F5D6F7E50E641DF152F7109ED5456B31F166E6CAC0425A7CF3AB6AF6B7FC3103B883202E9046565", 16)
p384t1.B, _ = new(big.Int).SetString("7F519EADA7BDA81BD826DBA647910F8C4B9346ED8CCDC64E4B1ABD11756DCE1D2074AA263B88805CED70355A33B471EE", 16)
p384t1.Gx, _ = new(big.Int).SetString("18DE98B02DB9A306F2AFCD7235F72A819B80AB12EBD653172476FECD462AABFFC4FF191B946A5F54D8D0AA2F418808CC", 16)
p384t1.Gy, _ = new(big.Int).SetString("25AB056962D30651A114AFD2755AD336747F93475B7A1FCA3B88F2B6A208CCFE469408584DC2B2912675BF5B9E582928", 16)
p384t1.BitSize = 384
}
func initP384r1() {
twisted := p384t1
params := &elliptic.CurveParams{
Name: "brainpoolP384r1",
P: twisted.P,
N: twisted.N,
BitSize: twisted.BitSize,
}
params.Gx, _ = new(big.Int).SetString("1D1C64F068CF45FFA2A63A81B7C13F6B8847A3E77EF14FE3DB7FCAFE0CBD10E8E826E03436D646AAEF87B2E247D4AF1E", 16)
params.Gy, _ = new(big.Int).SetString("8ABE1D7520F9C2A45CB1EB8E95CFD55262B70B29FEEC5864E19C054FF99129280E4646217791811142820341263C5315", 16)
z, _ := new(big.Int).SetString("41DFE8DD399331F7166A66076734A89CD0D2BCDB7D068E44E1F378F41ECBAE97D2D63DBC87BCCDDCCC5DA39E8589291C", 16)
p384r1 = newrcurve(twisted, params, z)
}
func initP512t1() {
p512t1 = &elliptic.CurveParams{Name: "brainpoolP512t1"}
p512t1.P, _ = new(big.Int).SetString("AADD9DB8DBE9C48B3FD4E6AE33C9FC07CB308DB3B3C9D20ED6639CCA703308717D4D9B009BC66842AECDA12AE6A380E62881FF2F2D82C68528AA6056583A48F3", 16)
p512t1.N, _ = new(big.Int).SetString("AADD9DB8DBE9C48B3FD4E6AE33C9FC07CB308DB3B3C9D20ED6639CCA70330870553E5C414CA92619418661197FAC10471DB1D381085DDADDB58796829CA90069", 16)
p512t1.B, _ = new(big.Int).SetString("7CBBBCF9441CFAB76E1890E46884EAE321F70C0BCB4981527897504BEC3E36A62BCDFA2304976540F6450085F2DAE145C22553B465763689180EA2571867423E", 16)
p512t1.Gx, _ = new(big.Int).SetString("640ECE5C12788717B9C1BA06CBC2A6FEBA85842458C56DDE9DB1758D39C0313D82BA51735CDB3EA499AA77A7D6943A64F7A3F25FE26F06B51BAA2696FA9035DA", 16)
p512t1.Gy, _ = new(big.Int).SetString("5B534BD595F5AF0FA2C892376C84ACE1BB4E3019B71634C01131159CAE03CEE9D9932184BEEF216BD71DF2DADF86A627306ECFF96DBB8BACE198B61E00F8B332", 16)
p512t1.BitSize = 512
}
func initP512r1() {
twisted := p512t1
params := &elliptic.CurveParams{
Name: "brainpoolP512r1",
P: twisted.P,
N: twisted.N,
BitSize: twisted.BitSize,
}
params.Gx, _ = new(big.Int).SetString("81AEE4BDD82ED9645A21322E9C4C6A9385ED9F70B5D916C1B43B62EEF4D0098EFF3B1F78E2D0D48D50D1687B93B97D5F7C6D5047406A5E688B352209BCB9F822", 16)
params.Gy, _ = new(big.Int).SetString("7DDE385D566332ECC0EABFA9CF7822FDF209F70024A57B1AA000C55B881F8111B2DCDE494A5F485E5BCA4BD88A2763AED1CA2B2FA8F0540678CD1E0F3AD80892", 16)
z, _ := new(big.Int).SetString("12EE58E6764838B69782136F0F2D3BA06E27695716054092E60A80BEDB212B64E585D90BCE13761F85C3F1D2A64E3BE8FEA2220F01EBA5EEB0F35DBD29D922AB", 16)
p512r1 = newrcurve(twisted, params, z)
}
// P256t1 returns a Curve which implements Brainpool P256t1 (see RFC 5639, section 3.4)
func P256t1() elliptic.Curve {
once.Do(initAll)
return p256t1
}
// P256r1 returns a Curve which implements Brainpool P256r1 (see RFC 5639, section 3.4)
func P256r1() elliptic.Curve {
once.Do(initAll)
return p256r1
}
// P384t1 returns a Curve which implements Brainpool P384t1 (see RFC 5639, section 3.6)
func P384t1() elliptic.Curve {
once.Do(initAll)
return p384t1
}
// P384r1 returns a Curve which implements Brainpool P384r1 (see RFC 5639, section 3.6)
func P384r1() elliptic.Curve {
once.Do(initAll)
return p384r1
}
// P512t1 returns a Curve which implements Brainpool P512t1 (see RFC 5639, section 3.7)
func P512t1() elliptic.Curve {
once.Do(initAll)
return p512t1
}
// P512r1 returns a Curve which implements Brainpool P512r1 (see RFC 5639, section 3.7)
func P512r1() elliptic.Curve {
once.Do(initAll)
return p512r1
}

@ -0,0 +1,83 @@
package brainpool
import (
"crypto/elliptic"
"math/big"
)
var _ elliptic.Curve = (*rcurve)(nil)
type rcurve struct {
twisted elliptic.Curve
params *elliptic.CurveParams
z *big.Int
zinv *big.Int
z2 *big.Int
z3 *big.Int
zinv2 *big.Int
zinv3 *big.Int
}
var (
two = big.NewInt(2)
three = big.NewInt(3)
)
func newrcurve(twisted elliptic.Curve, params *elliptic.CurveParams, z *big.Int) *rcurve {
zinv := new(big.Int).ModInverse(z, params.P)
return &rcurve{
twisted: twisted,
params: params,
z: z,
zinv: zinv,
z2: new(big.Int).Exp(z, two, params.P),
z3: new(big.Int).Exp(z, three, params.P),
zinv2: new(big.Int).Exp(zinv, two, params.P),
zinv3: new(big.Int).Exp(zinv, three, params.P),
}
}
func (curve *rcurve) toTwisted(x, y *big.Int) (*big.Int, *big.Int) {
var tx, ty big.Int
tx.Mul(x, curve.z2)
tx.Mod(&tx, curve.params.P)
ty.Mul(y, curve.z3)
ty.Mod(&ty, curve.params.P)
return &tx, &ty
}
func (curve *rcurve) fromTwisted(tx, ty *big.Int) (*big.Int, *big.Int) {
var x, y big.Int
x.Mul(tx, curve.zinv2)
x.Mod(&x, curve.params.P)
y.Mul(ty, curve.zinv3)
y.Mod(&y, curve.params.P)
return &x, &y
}
func (curve *rcurve) Params() *elliptic.CurveParams {
return curve.params
}
func (curve *rcurve) IsOnCurve(x, y *big.Int) bool {
return curve.twisted.IsOnCurve(curve.toTwisted(x, y))
}
func (curve *rcurve) Add(x1, y1, x2, y2 *big.Int) (x, y *big.Int) {
tx1, ty1 := curve.toTwisted(x1, y1)
tx2, ty2 := curve.toTwisted(x2, y2)
return curve.fromTwisted(curve.twisted.Add(tx1, ty1, tx2, ty2))
}
func (curve *rcurve) Double(x1, y1 *big.Int) (x, y *big.Int) {
return curve.fromTwisted(curve.twisted.Double(curve.toTwisted(x1, y1)))
}
func (curve *rcurve) ScalarMult(x1, y1 *big.Int, scalar []byte) (x, y *big.Int) {
tx1, ty1 := curve.toTwisted(x1, y1)
return curve.fromTwisted(curve.twisted.ScalarMult(tx1, ty1, scalar))
}
func (curve *rcurve) ScalarBaseMult(scalar []byte) (x, y *big.Int) {
return curve.fromTwisted(curve.twisted.ScalarBaseMult(scalar))
}

@ -4,7 +4,7 @@
// Package cast5 implements CAST5, as defined in RFC 2144. CAST5 is a common
// OpenPGP cipher.
package cast5 // import "golang.org/x/crypto/cast5"
package cast5
import "errors"

@ -0,0 +1,20 @@
// Copyright 2012 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// This code was translated into a form compatible with 6a from the public
// domain sources in SUPERCOP: http://bench.cr.yp.to/supercop.html
// +build amd64,!gccgo,!appengine
DATA REDMASK51(SB)/8, $0x0007FFFFFFFFFFFF
GLOBL REDMASK51(SB), 8, $8
DATA _121666_213(SB)/8, $996687872
GLOBL _121666_213(SB), 8, $8
DATA _2P0(SB)/8, $0xFFFFFFFFFFFDA
GLOBL _2P0(SB), 8, $8
DATA _2P1234(SB)/8, $0xFFFFFFFFFFFFE
GLOBL _2P1234(SB), 8, $8

@ -0,0 +1,88 @@
// Copyright 2012 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// This code was translated into a form compatible with 6a from the public
// domain sources in SUPERCOP: http://bench.cr.yp.to/supercop.html
// +build amd64,!gccgo,!appengine
// func cswap(inout *[5]uint64, v uint64)
TEXT cswap(SB),7,$0
MOVQ inout+0(FP),DI
MOVQ v+8(FP),SI
CMPQ SI,$1
MOVQ 0(DI),SI
MOVQ 80(DI),DX
MOVQ 8(DI),CX
MOVQ 88(DI),R8
MOVQ SI,R9
CMOVQEQ DX,SI
CMOVQEQ R9,DX
MOVQ CX,R9
CMOVQEQ R8,CX
CMOVQEQ R9,R8
MOVQ SI,0(DI)
MOVQ DX,80(DI)
MOVQ CX,8(DI)
MOVQ R8,88(DI)
MOVQ 16(DI),SI
MOVQ 96(DI),DX
MOVQ 24(DI),CX
MOVQ 104(DI),R8
MOVQ SI,R9
CMOVQEQ DX,SI
CMOVQEQ R9,DX
MOVQ CX,R9
CMOVQEQ R8,CX
CMOVQEQ R9,R8
MOVQ SI,16(DI)
MOVQ DX,96(DI)
MOVQ CX,24(DI)
MOVQ R8,104(DI)
MOVQ 32(DI),SI
MOVQ 112(DI),DX
MOVQ 40(DI),CX
MOVQ 120(DI),R8
MOVQ SI,R9
CMOVQEQ DX,SI
CMOVQEQ R9,DX
MOVQ CX,R9
CMOVQEQ R8,CX
CMOVQEQ R9,R8
MOVQ SI,32(DI)
MOVQ DX,112(DI)
MOVQ CX,40(DI)
MOVQ R8,120(DI)
MOVQ 48(DI),SI
MOVQ 128(DI),DX
MOVQ 56(DI),CX
MOVQ 136(DI),R8
MOVQ SI,R9
CMOVQEQ DX,SI
CMOVQEQ R9,DX
MOVQ CX,R9
CMOVQEQ R8,CX
CMOVQEQ R9,R8
MOVQ SI,48(DI)
MOVQ DX,128(DI)
MOVQ CX,56(DI)
MOVQ R8,136(DI)
MOVQ 64(DI),SI
MOVQ 144(DI),DX
MOVQ 72(DI),CX
MOVQ 152(DI),R8
MOVQ SI,R9
CMOVQEQ DX,SI
CMOVQEQ R9,DX
MOVQ CX,R9
CMOVQEQ R8,CX
CMOVQEQ R9,R8
MOVQ SI,64(DI)
MOVQ DX,144(DI)
MOVQ CX,72(DI)
MOVQ R8,152(DI)
MOVQ DI,AX
MOVQ SI,DX
RET

@ -0,0 +1,841 @@
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// We have a implementation in amd64 assembly so this code is only run on
// non-amd64 platforms. The amd64 assembly does not support gccgo.
// +build !amd64 gccgo appengine
package curve25519
// This code is a port of the public domain, "ref10" implementation of
// curve25519 from SUPERCOP 20130419 by D. J. Bernstein.
// fieldElement represents an element of the field GF(2^255 - 19). An element
// t, entries t[0]...t[9], represents the integer t[0]+2^26 t[1]+2^51 t[2]+2^77
// t[3]+2^102 t[4]+...+2^230 t[9]. Bounds on each t[i] vary depending on
// context.
type fieldElement [10]int32
func feZero(fe *fieldElement) {
for i := range fe {
fe[i] = 0
}
}
func feOne(fe *fieldElement) {
feZero(fe)
fe[0] = 1
}
func feAdd(dst, a, b *fieldElement) {
for i := range dst {
dst[i] = a[i] + b[i]
}
}
func feSub(dst, a, b *fieldElement) {
for i := range dst {
dst[i] = a[i] - b[i]
}
}
func feCopy(dst, src *fieldElement) {
for i := range dst {
dst[i] = src[i]
}
}
// feCSwap replaces (f,g) with (g,f) if b == 1; replaces (f,g) with (f,g) if b == 0.
//
// Preconditions: b in {0,1}.
func feCSwap(f, g *fieldElement, b int32) {
var x fieldElement
b = -b
for i := range x {
x[i] = b & (f[i] ^ g[i])
}
for i := range f {
f[i] ^= x[i]
}
for i := range g {
g[i] ^= x[i]
}
}
// load3 reads a 24-bit, little-endian value from in.
func load3(in []byte) int64 {
var r int64
r = int64(in[0])
r |= int64(in[1]) << 8
r |= int64(in[2]) << 16
return r
}
// load4 reads a 32-bit, little-endian value from in.
func load4(in []byte) int64 {
var r int64
r = int64(in[0])
r |= int64(in[1]) << 8
r |= int64(in[2]) << 16
r |= int64(in[3]) << 24
return r
}
func feFromBytes(dst *fieldElement, src *[32]byte) {
h0 := load4(src[:])
h1 := load3(src[4:]) << 6
h2 := load3(src[7:]) << 5
h3 := load3(src[10:]) << 3
h4 := load3(src[13:]) << 2
h5 := load4(src[16:])
h6 := load3(src[20:]) << 7
h7 := load3(src[23:]) << 5
h8 := load3(src[26:]) << 4
h9 := load3(src[29:]) << 2
var carry [10]int64
carry[9] = (h9 + 1<<24) >> 25
h0 += carry[9] * 19
h9 -= carry[9] << 25
carry[1] = (h1 + 1<<24) >> 25
h2 += carry[1]
h1 -= carry[1] << 25
carry[3] = (h3 + 1<<24) >> 25
h4 += carry[3]
h3 -= carry[3] << 25
carry[5] = (h5 + 1<<24) >> 25
h6 += carry[5]
h5 -= carry[5] << 25
carry[7] = (h7 + 1<<24) >> 25
h8 += carry[7]
h7 -= carry[7] << 25
carry[0] = (h0 + 1<<25) >> 26
h1 += carry[0]
h0 -= carry[0] << 26
carry[2] = (h2 + 1<<25) >> 26
h3 += carry[2]
h2 -= carry[2] << 26
carry[4] = (h4 + 1<<25) >> 26
h5 += carry[4]
h4 -= carry[4] << 26
carry[6] = (h6 + 1<<25) >> 26
h7 += carry[6]
h6 -= carry[6] << 26
carry[8] = (h8 + 1<<25) >> 26
h9 += carry[8]
h8 -= carry[8] << 26
dst[0] = int32(h0)
dst[1] = int32(h1)
dst[2] = int32(h2)
dst[3] = int32(h3)
dst[4] = int32(h4)
dst[5] = int32(h5)
dst[6] = int32(h6)
dst[7] = int32(h7)
dst[8] = int32(h8)
dst[9] = int32(h9)
}
// feToBytes marshals h to s.
// Preconditions:
// |h| bounded by 1.1*2^25,1.1*2^24,1.1*2^25,1.1*2^24,etc.
//
// Write p=2^255-19; q=floor(h/p).
// Basic claim: q = floor(2^(-255)(h + 19 2^(-25)h9 + 2^(-1))).
//
// Proof:
// Have |h|<=p so |q|<=1 so |19^2 2^(-255) q|<1/4.
// Also have |h-2^230 h9|<2^230 so |19 2^(-255)(h-2^230 h9)|<1/4.
//
// Write y=2^(-1)-19^2 2^(-255)q-19 2^(-255)(h-2^230 h9).
// Then 0<y<1.
//
// Write r=h-pq.
// Have 0<=r<=p-1=2^255-20.
// Thus 0<=r+19(2^-255)r<r+19(2^-255)2^255<=2^255-1.
//
// Write x=r+19(2^-255)r+y.
// Then 0<x<2^255 so floor(2^(-255)x) = 0 so floor(q+2^(-255)x) = q.
//
// Have q+2^(-255)x = 2^(-255)(h + 19 2^(-25) h9 + 2^(-1))
// so floor(2^(-255)(h + 19 2^(-25) h9 + 2^(-1))) = q.
func feToBytes(s *[32]byte, h *fieldElement) {
var carry [10]int32
q := (19*h[9] + (1 << 24)) >> 25
q = (h[0] + q) >> 26
q = (h[1] + q) >> 25
q = (h[2] + q) >> 26
q = (h[3] + q) >> 25
q = (h[4] + q) >> 26
q = (h[5] + q) >> 25
q = (h[6] + q) >> 26
q = (h[7] + q) >> 25
q = (h[8] + q) >> 26
q = (h[9] + q) >> 25
// Goal: Output h-(2^255-19)q, which is between 0 and 2^255-20.
h[0] += 19 * q
// Goal: Output h-2^255 q, which is between 0 and 2^255-20.
carry[0] = h[0] >> 26
h[1] += carry[0]
h[0] -= carry[0] << 26
carry[1] = h[1] >> 25
h[2] += carry[1]
h[1] -= carry[1] << 25
carry[2] = h[2] >> 26
h[3] += carry[2]
h[2] -= carry[2] << 26
carry[3] = h[3] >> 25
h[4] += carry[3]
h[3] -= carry[3] << 25
carry[4] = h[4] >> 26
h[5] += carry[4]
h[4] -= carry[4] << 26
carry[5] = h[5] >> 25
h[6] += carry[5]
h[5] -= carry[5] << 25
carry[6] = h[6] >> 26
h[7] += carry[6]
h[6] -= carry[6] << 26
carry[7] = h[7] >> 25
h[8] += carry[7]
h[7] -= carry[7] << 25
carry[8] = h[8] >> 26
h[9] += carry[8]
h[8] -= carry[8] << 26
carry[9] = h[9] >> 25
h[9] -= carry[9] << 25
// h10 = carry9
// Goal: Output h[0]+...+2^255 h10-2^255 q, which is between 0 and 2^255-20.
// Have h[0]+...+2^230 h[9] between 0 and 2^255-1;
// evidently 2^255 h10-2^255 q = 0.
// Goal: Output h[0]+...+2^230 h[9].
s[0] = byte(h[0] >> 0)
s[1] = byte(h[0] >> 8)
s[2] = byte(h[0] >> 16)
s[3] = byte((h[0] >> 24) | (h[1] << 2))
s[4] = byte(h[1] >> 6)
s[5] = byte(h[1] >> 14)
s[6] = byte((h[1] >> 22) | (h[2] << 3))
s[7] = byte(h[2] >> 5)
s[8] = byte(h[2] >> 13)
s[9] = byte((h[2] >> 21) | (h[3] << 5))
s[10] = byte(h[3] >> 3)
s[11] = byte(h[3] >> 11)
s[12] = byte((h[3] >> 19) | (h[4] << 6))
s[13] = byte(h[4] >> 2)
s[14] = byte(h[4] >> 10)
s[15] = byte(h[4] >> 18)
s[16] = byte(h[5] >> 0)
s[17] = byte(h[5] >> 8)
s[18] = byte(h[5] >> 16)
s[19] = byte((h[5] >> 24) | (h[6] << 1))
s[20] = byte(h[6] >> 7)
s[21] = byte(h[6] >> 15)
s[22] = byte((h[6] >> 23) | (h[7] << 3))
s[23] = byte(h[7] >> 5)
s[24] = byte(h[7] >> 13)
s[25] = byte((h[7] >> 21) | (h[8] << 4))
s[26] = byte(h[8] >> 4)
s[27] = byte(h[8] >> 12)
s[28] = byte((h[8] >> 20) | (h[9] << 6))
s[29] = byte(h[9] >> 2)
s[30] = byte(h[9] >> 10)
s[31] = byte(h[9] >> 18)
}
// feMul calculates h = f * g
// Can overlap h with f or g.
//
// Preconditions:
// |f| bounded by 1.1*2^26,1.1*2^25,1.1*2^26,1.1*2^25,etc.
// |g| bounded by 1.1*2^26,1.1*2^25,1.1*2^26,1.1*2^25,etc.
//
// Postconditions:
// |h| bounded by 1.1*2^25,1.1*2^24,1.1*2^25,1.1*2^24,etc.
//
// Notes on implementation strategy:
//
// Using schoolbook multiplication.
// Karatsuba would save a little in some cost models.
//
// Most multiplications by 2 and 19 are 32-bit precomputations;
// cheaper than 64-bit postcomputations.
//
// There is one remaining multiplication by 19 in the carry chain;
// one *19 precomputation can be merged into this,
// but the resulting data flow is considerably less clean.
//
// There are 12 carries below.
// 10 of them are 2-way parallelizable and vectorizable.
// Can get away with 11 carries, but then data flow is much deeper.
//
// With tighter constraints on inputs can squeeze carries into int32.
func feMul(h, f, g *fieldElement) {
f0 := f[0]
f1 := f[1]
f2 := f[2]
f3 := f[3]
f4 := f[4]
f5 := f[5]
f6 := f[6]
f7 := f[7]
f8 := f[8]
f9 := f[9]
g0 := g[0]
g1 := g[1]
g2 := g[2]
g3 := g[3]
g4 := g[4]
g5 := g[5]
g6 := g[6]
g7 := g[7]
g8 := g[8]
g9 := g[9]
g1_19 := 19 * g1 // 1.4*2^29
g2_19 := 19 * g2 // 1.4*2^30; still ok
g3_19 := 19 * g3
g4_19 := 19 * g4
g5_19 := 19 * g5
g6_19 := 19 * g6
g7_19 := 19 * g7
g8_19 := 19 * g8
g9_19 := 19 * g9
f1_2 := 2 * f1
f3_2 := 2 * f3
f5_2 := 2 * f5
f7_2 := 2 * f7
f9_2 := 2 * f9
f0g0 := int64(f0) * int64(g0)
f0g1 := int64(f0) * int64(g1)
f0g2 := int64(f0) * int64(g2)
f0g3 := int64(f0) * int64(g3)
f0g4 := int64(f0) * int64(g4)
f0g5 := int64(f0) * int64(g5)
f0g6 := int64(f0) * int64(g6)
f0g7 := int64(f0) * int64(g7)
f0g8 := int64(f0) * int64(g8)
f0g9 := int64(f0) * int64(g9)
f1g0 := int64(f1) * int64(g0)
f1g1_2 := int64(f1_2) * int64(g1)
f1g2 := int64(f1) * int64(g2)
f1g3_2 := int64(f1_2) * int64(g3)
f1g4 := int64(f1) * int64(g4)
f1g5_2 := int64(f1_2) * int64(g5)
f1g6 := int64(f1) * int64(g6)
f1g7_2 := int64(f1_2) * int64(g7)
f1g8 := int64(f1) * int64(g8)
f1g9_38 := int64(f1_2) * int64(g9_19)
f2g0 := int64(f2) * int64(g0)
f2g1 := int64(f2) * int64(g1)
f2g2 := int64(f2) * int64(g2)
f2g3 := int64(f2) * int64(g3)
f2g4 := int64(f2) * int64(g4)
f2g5 := int64(f2) * int64(g5)
f2g6 := int64(f2) * int64(g6)
f2g7 := int64(f2) * int64(g7)
f2g8_19 := int64(f2) * int64(g8_19)
f2g9_19 := int64(f2) * int64(g9_19)
f3g0 := int64(f3) * int64(g0)
f3g1_2 := int64(f3_2) * int64(g1)
f3g2 := int64(f3) * int64(g2)
f3g3_2 := int64(f3_2) * int64(g3)
f3g4 := int64(f3) * int64(g4)
f3g5_2 := int64(f3_2) * int64(g5)
f3g6 := int64(f3) * int64(g6)
f3g7_38 := int64(f3_2) * int64(g7_19)
f3g8_19 := int64(f3) * int64(g8_19)
f3g9_38 := int64(f3_2) * int64(g9_19)
f4g0 := int64(f4) * int64(g0)
f4g1 := int64(f4) * int64(g1)
f4g2 := int64(f4) * int64(g2)
f4g3 := int64(f4) * int64(g3)
f4g4 := int64(f4) * int64(g4)
f4g5 := int64(f4) * int64(g5)
f4g6_19 := int64(f4) * int64(g6_19)
f4g7_19 := int64(f4) * int64(g7_19)
f4g8_19 := int64(f4) * int64(g8_19)
f4g9_19 := int64(f4) * int64(g9_19)
f5g0 := int64(f5) * int64(g0)
f5g1_2 := int64(f5_2) * int64(g1)
f5g2 := int64(f5) * int64(g2)
f5g3_2 := int64(f5_2) * int64(g3)
f5g4 := int64(f5) * int64(g4)
f5g5_38 := int64(f5_2) * int64(g5_19)
f5g6_19 := int64(f5) * int64(g6_19)
f5g7_38 := int64(f5_2) * int64(g7_19)
f5g8_19 := int64(f5) * int64(g8_19)
f5g9_38 := int64(f5_2) * int64(g9_19)
f6g0 := int64(f6) * int64(g0)
f6g1 := int64(f6) * int64(g1)
f6g2 := int64(f6) * int64(g2)
f6g3 := int64(f6) * int64(g3)
f6g4_19 := int64(f6) * int64(g4_19)
f6g5_19 := int64(f6) * int64(g5_19)
f6g6_19 := int64(f6) * int64(g6_19)
f6g7_19 := int64(f6) * int64(g7_19)
f6g8_19 := int64(f6) * int64(g8_19)
f6g9_19 := int64(f6) * int64(g9_19)
f7g0 := int64(f7) * int64(g0)
f7g1_2 := int64(f7_2) * int64(g1)
f7g2 := int64(f7) * int64(g2)
f7g3_38 := int64(f7_2) * int64(g3_19)
f7g4_19 := int64(f7) * int64(g4_19)
f7g5_38 := int64(f7_2) * int64(g5_19)
f7g6_19 := int64(f7) * int64(g6_19)
f7g7_38 := int64(f7_2) * int64(g7_19)
f7g8_19 := int64(f7) * int64(g8_19)
f7g9_38 := int64(f7_2) * int64(g9_19)
f8g0 := int64(f8) * int64(g0)
f8g1 := int64(f8) * int64(g1)
f8g2_19 := int64(f8) * int64(g2_19)
f8g3_19 := int64(f8) * int64(g3_19)
f8g4_19 := int64(f8) * int64(g4_19)
f8g5_19 := int64(f8) * int64(g5_19)
f8g6_19 := int64(f8) * int64(g6_19)
f8g7_19 := int64(f8) * int64(g7_19)
f8g8_19 := int64(f8) * int64(g8_19)
f8g9_19 := int64(f8) * int64(g9_19)
f9g0 := int64(f9) * int64(g0)
f9g1_38 := int64(f9_2) * int64(g1_19)
f9g2_19 := int64(f9) * int64(g2_19)
f9g3_38 := int64(f9_2) * int64(g3_19)
f9g4_19 := int64(f9) * int64(g4_19)
f9g5_38 := int64(f9_2) * int64(g5_19)
f9g6_19 := int64(f9) * int64(g6_19)
f9g7_38 := int64(f9_2) * int64(g7_19)
f9g8_19 := int64(f9) * int64(g8_19)
f9g9_38 := int64(f9_2) * int64(g9_19)
h0 := f0g0 + f1g9_38 + f2g8_19 + f3g7_38 + f4g6_19 + f5g5_38 + f6g4_19 + f7g3_38 + f8g2_19 + f9g1_38
h1 := f0g1 + f1g0 + f2g9_19 + f3g8_19 + f4g7_19 + f5g6_19 + f6g5_19 + f7g4_19 + f8g3_19 + f9g2_19
h2 := f0g2 + f1g1_2 + f2g0 + f3g9_38 + f4g8_19 + f5g7_38 + f6g6_19 + f7g5_38 + f8g4_19 + f9g3_38
h3 := f0g3 + f1g2 + f2g1 + f3g0 + f4g9_19 + f5g8_19 + f6g7_19 + f7g6_19 + f8g5_19 + f9g4_19
h4 := f0g4 + f1g3_2 + f2g2 + f3g1_2 + f4g0 + f5g9_38 + f6g8_19 + f7g7_38 + f8g6_19 + f9g5_38
h5 := f0g5 + f1g4 + f2g3 + f3g2 + f4g1 + f5g0 + f6g9_19 + f7g8_19 + f8g7_19 + f9g6_19
h6 := f0g6 + f1g5_2 + f2g4 + f3g3_2 + f4g2 + f5g1_2 + f6g0 + f7g9_38 + f8g8_19 + f9g7_38
h7 := f0g7 + f1g6 + f2g5 + f3g4 + f4g3 + f5g2 + f6g1 + f7g0 + f8g9_19 + f9g8_19
h8 := f0g8 + f1g7_2 + f2g6 + f3g5_2 + f4g4 + f5g3_2 + f6g2 + f7g1_2 + f8g0 + f9g9_38
h9 := f0g9 + f1g8 + f2g7 + f3g6 + f4g5 + f5g4 + f6g3 + f7g2 + f8g1 + f9g0
var carry [10]int64
// |h0| <= (1.1*1.1*2^52*(1+19+19+19+19)+1.1*1.1*2^50*(38+38+38+38+38))
// i.e. |h0| <= 1.2*2^59; narrower ranges for h2, h4, h6, h8
// |h1| <= (1.1*1.1*2^51*(1+1+19+19+19+19+19+19+19+19))
// i.e. |h1| <= 1.5*2^58; narrower ranges for h3, h5, h7, h9
carry[0] = (h0 + (1 << 25)) >> 26
h1 += carry[0]
h0 -= carry[0] << 26
carry[4] = (h4 + (1 << 25)) >> 26
h5 += carry[4]
h4 -= carry[4] << 26
// |h0| <= 2^25
// |h4| <= 2^25
// |h1| <= 1.51*2^58
// |h5| <= 1.51*2^58
carry[1] = (h1 + (1 << 24)) >> 25
h2 += carry[1]
h1 -= carry[1] << 25
carry[5] = (h5 + (1 << 24)) >> 25
h6 += carry[5]
h5 -= carry[5] << 25
// |h1| <= 2^24; from now on fits into int32
// |h5| <= 2^24; from now on fits into int32
// |h2| <= 1.21*2^59
// |h6| <= 1.21*2^59
carry[2] = (h2 + (1 << 25)) >> 26
h3 += carry[2]
h2 -= carry[2] << 26
carry[6] = (h6 + (1 << 25)) >> 26
h7 += carry[6]
h6 -= carry[6] << 26
// |h2| <= 2^25; from now on fits into int32 unchanged
// |h6| <= 2^25; from now on fits into int32 unchanged
// |h3| <= 1.51*2^58
// |h7| <= 1.51*2^58
carry[3] = (h3 + (1 << 24)) >> 25
h4 += carry[3]
h3 -= carry[3] << 25
carry[7] = (h7 + (1 << 24)) >> 25
h8 += carry[7]
h7 -= carry[7] << 25
// |h3| <= 2^24; from now on fits into int32 unchanged
// |h7| <= 2^24; from now on fits into int32 unchanged
// |h4| <= 1.52*2^33
// |h8| <= 1.52*2^33
carry[4] = (h4 + (1 << 25)) >> 26
h5 += carry[4]
h4 -= carry[4] << 26
carry[8] = (h8 + (1 << 25)) >> 26
h9 += carry[8]
h8 -= carry[8] << 26
// |h4| <= 2^25; from now on fits into int32 unchanged
// |h8| <= 2^25; from now on fits into int32 unchanged
// |h5| <= 1.01*2^24
// |h9| <= 1.51*2^58
carry[9] = (h9 + (1 << 24)) >> 25
h0 += carry[9] * 19
h9 -= carry[9] << 25
// |h9| <= 2^24; from now on fits into int32 unchanged
// |h0| <= 1.8*2^37
carry[0] = (h0 + (1 << 25)) >> 26
h1 += carry[0]
h0 -= carry[0] << 26
// |h0| <= 2^25; from now on fits into int32 unchanged
// |h1| <= 1.01*2^24
h[0] = int32(h0)
h[1] = int32(h1)
h[2] = int32(h2)
h[3] = int32(h3)
h[4] = int32(h4)
h[5] = int32(h5)
h[6] = int32(h6)
h[7] = int32(h7)
h[8] = int32(h8)
h[9] = int32(h9)
}
// feSquare calculates h = f*f. Can overlap h with f.
//
// Preconditions:
// |f| bounded by 1.1*2^26,1.1*2^25,1.1*2^26,1.1*2^25,etc.
//
// Postconditions:
// |h| bounded by 1.1*2^25,1.1*2^24,1.1*2^25,1.1*2^24,etc.
func feSquare(h, f *fieldElement) {
f0 := f[0]
f1 := f[1]
f2 := f[2]
f3 := f[3]
f4 := f[4]
f5 := f[5]
f6 := f[6]
f7 := f[7]
f8 := f[8]
f9 := f[9]
f0_2 := 2 * f0
f1_2 := 2 * f1
f2_2 := 2 * f2
f3_2 := 2 * f3
f4_2 := 2 * f4
f5_2 := 2 * f5
f6_2 := 2 * f6
f7_2 := 2 * f7
f5_38 := 38 * f5 // 1.31*2^30
f6_19 := 19 * f6 // 1.31*2^30
f7_38 := 38 * f7 // 1.31*2^30
f8_19 := 19 * f8 // 1.31*2^30
f9_38 := 38 * f9 // 1.31*2^30
f0f0 := int64(f0) * int64(f0)
f0f1_2 := int64(f0_2) * int64(f1)
f0f2_2 := int64(f0_2) * int64(f2)
f0f3_2 := int64(f0_2) * int64(f3)
f0f4_2 := int64(f0_2) * int64(f4)
f0f5_2 := int64(f0_2) * int64(f5)
f0f6_2 := int64(f0_2) * int64(f6)
f0f7_2 := int64(f0_2) * int64(f7)
f0f8_2 := int64(f0_2) * int64(f8)
f0f9_2 := int64(f0_2) * int64(f9)
f1f1_2 := int64(f1_2) * int64(f1)
f1f2_2 := int64(f1_2) * int64(f2)
f1f3_4 := int64(f1_2) * int64(f3_2)
f1f4_2 := int64(f1_2) * int64(f4)
f1f5_4 := int64(f1_2) * int64(f5_2)
f1f6_2 := int64(f1_2) * int64(f6)
f1f7_4 := int64(f1_2) * int64(f7_2)
f1f8_2 := int64(f1_2) * int64(f8)
f1f9_76 := int64(f1_2) * int64(f9_38)
f2f2 := int64(f2) * int64(f2)
f2f3_2 := int64(f2_2) * int64(f3)
f2f4_2 := int64(f2_2) * int64(f4)
f2f5_2 := int64(f2_2) * int64(f5)
f2f6_2 := int64(f2_2) * int64(f6)
f2f7_2 := int64(f2_2) * int64(f7)
f2f8_38 := int64(f2_2) * int64(f8_19)
f2f9_38 := int64(f2) * int64(f9_38)
f3f3_2 := int64(f3_2) * int64(f3)
f3f4_2 := int64(f3_2) * int64(f4)
f3f5_4 := int64(f3_2) * int64(f5_2)
f3f6_2 := int64(f3_2) * int64(f6)
f3f7_76 := int64(f3_2) * int64(f7_38)
f3f8_38 := int64(f3_2) * int64(f8_19)
f3f9_76 := int64(f3_2) * int64(f9_38)
f4f4 := int64(f4) * int64(f4)
f4f5_2 := int64(f4_2) * int64(f5)
f4f6_38 := int64(f4_2) * int64(f6_19)
f4f7_38 := int64(f4) * int64(f7_38)
f4f8_38 := int64(f4_2) * int64(f8_19)
f4f9_38 := int64(f4) * int64(f9_38)
f5f5_38 := int64(f5) * int64(f5_38)
f5f6_38 := int64(f5_2) * int64(f6_19)
f5f7_76 := int64(f5_2) * int64(f7_38)
f5f8_38 := int64(f5_2) * int64(f8_19)
f5f9_76 := int64(f5_2) * int64(f9_38)
f6f6_19 := int64(f6) * int64(f6_19)
f6f7_38 := int64(f6) * int64(f7_38)
f6f8_38 := int64(f6_2) * int64(f8_19)
f6f9_38 := int64(f6) * int64(f9_38)
f7f7_38 := int64(f7) * int64(f7_38)
f7f8_38 := int64(f7_2) * int64(f8_19)
f7f9_76 := int64(f7_2) * int64(f9_38)
f8f8_19 := int64(f8) * int64(f8_19)
f8f9_38 := int64(f8) * int64(f9_38)
f9f9_38 := int64(f9) * int64(f9_38)
h0 := f0f0 + f1f9_76 + f2f8_38 + f3f7_76 + f4f6_38 + f5f5_38
h1 := f0f1_2 + f2f9_38 + f3f8_38 + f4f7_38 + f5f6_38
h2 := f0f2_2 + f1f1_2 + f3f9_76 + f4f8_38 + f5f7_76 + f6f6_19
h3 := f0f3_2 + f1f2_2 + f4f9_38 + f5f8_38 + f6f7_38
h4 := f0f4_2 + f1f3_4 + f2f2 + f5f9_76 + f6f8_38 + f7f7_38
h5 := f0f5_2 + f1f4_2 + f2f3_2 + f6f9_38 + f7f8_38
h6 := f0f6_2 + f1f5_4 + f2f4_2 + f3f3_2 + f7f9_76 + f8f8_19
h7 := f0f7_2 + f1f6_2 + f2f5_2 + f3f4_2 + f8f9_38
h8 := f0f8_2 + f1f7_4 + f2f6_2 + f3f5_4 + f4f4 + f9f9_38
h9 := f0f9_2 + f1f8_2 + f2f7_2 + f3f6_2 + f4f5_2
var carry [10]int64
carry[0] = (h0 + (1 << 25)) >> 26
h1 += carry[0]
h0 -= carry[0] << 26
carry[4] = (h4 + (1 << 25)) >> 26
h5 += carry[4]
h4 -= carry[4] << 26
carry[1] = (h1 + (1 << 24)) >> 25
h2 += carry[1]
h1 -= carry[1] << 25
carry[5] = (h5 + (1 << 24)) >> 25
h6 += carry[5]
h5 -= carry[5] << 25
carry[2] = (h2 + (1 << 25)) >> 26
h3 += carry[2]
h2 -= carry[2] << 26
carry[6] = (h6 + (1 << 25)) >> 26
h7 += carry[6]
h6 -= carry[6] << 26
carry[3] = (h3 + (1 << 24)) >> 25
h4 += carry[3]
h3 -= carry[3] << 25
carry[7] = (h7 + (1 << 24)) >> 25
h8 += carry[7]
h7 -= carry[7] << 25
carry[4] = (h4 + (1 << 25)) >> 26
h5 += carry[4]
h4 -= carry[4] << 26
carry[8] = (h8 + (1 << 25)) >> 26
h9 += carry[8]
h8 -= carry[8] << 26
carry[9] = (h9 + (1 << 24)) >> 25
h0 += carry[9] * 19
h9 -= carry[9] << 25
carry[0] = (h0 + (1 << 25)) >> 26
h1 += carry[0]
h0 -= carry[0] << 26
h[0] = int32(h0)
h[1] = int32(h1)
h[2] = int32(h2)
h[3] = int32(h3)
h[4] = int32(h4)
h[5] = int32(h5)
h[6] = int32(h6)
h[7] = int32(h7)
h[8] = int32(h8)
h[9] = int32(h9)
}
// feMul121666 calculates h = f * 121666. Can overlap h with f.
//
// Preconditions:
// |f| bounded by 1.1*2^26,1.1*2^25,1.1*2^26,1.1*2^25,etc.
//
// Postconditions:
// |h| bounded by 1.1*2^25,1.1*2^24,1.1*2^25,1.1*2^24,etc.
func feMul121666(h, f *fieldElement) {
h0 := int64(f[0]) * 121666
h1 := int64(f[1]) * 121666
h2 := int64(f[2]) * 121666
h3 := int64(f[3]) * 121666
h4 := int64(f[4]) * 121666
h5 := int64(f[5]) * 121666
h6 := int64(f[6]) * 121666
h7 := int64(f[7]) * 121666
h8 := int64(f[8]) * 121666
h9 := int64(f[9]) * 121666
var carry [10]int64
carry[9] = (h9 + (1 << 24)) >> 25
h0 += carry[9] * 19
h9 -= carry[9] << 25
carry[1] = (h1 + (1 << 24)) >> 25
h2 += carry[1]
h1 -= carry[1] << 25
carry[3] = (h3 + (1 << 24)) >> 25
h4 += carry[3]
h3 -= carry[3] << 25
carry[5] = (h5 + (1 << 24)) >> 25
h6 += carry[5]
h5 -= carry[5] << 25
carry[7] = (h7 + (1 << 24)) >> 25
h8 += carry[7]
h7 -= carry[7] << 25
carry[0] = (h0 + (1 << 25)) >> 26
h1 += carry[0]
h0 -= carry[0] << 26
carry[2] = (h2 + (1 << 25)) >> 26
h3 += carry[2]
h2 -= carry[2] << 26
carry[4] = (h4 + (1 << 25)) >> 26
h5 += carry[4]
h4 -= carry[4] << 26
carry[6] = (h6 + (1 << 25)) >> 26
h7 += carry[6]
h6 -= carry[6] << 26
carry[8] = (h8 + (1 << 25)) >> 26
h9 += carry[8]
h8 -= carry[8] << 26
h[0] = int32(h0)
h[1] = int32(h1)
h[2] = int32(h2)
h[3] = int32(h3)
h[4] = int32(h4)
h[5] = int32(h5)
h[6] = int32(h6)
h[7] = int32(h7)
h[8] = int32(h8)
h[9] = int32(h9)
}
// feInvert sets out = z^-1.
func feInvert(out, z *fieldElement) {
var t0, t1, t2, t3 fieldElement
var i int
feSquare(&t0, z)
for i = 1; i < 1; i++ {
feSquare(&t0, &t0)
}
feSquare(&t1, &t0)
for i = 1; i < 2; i++ {
feSquare(&t1, &t1)
}
feMul(&t1, z, &t1)
feMul(&t0, &t0, &t1)
feSquare(&t2, &t0)
for i = 1; i < 1; i++ {
feSquare(&t2, &t2)
}
feMul(&t1, &t1, &t2)
feSquare(&t2, &t1)
for i = 1; i < 5; i++ {
feSquare(&t2, &t2)
}
feMul(&t1, &t2, &t1)
feSquare(&t2, &t1)
for i = 1; i < 10; i++ {
feSquare(&t2, &t2)
}
feMul(&t2, &t2, &t1)
feSquare(&t3, &t2)
for i = 1; i < 20; i++ {
feSquare(&t3, &t3)
}
feMul(&t2, &t3, &t2)
feSquare(&t2, &t2)
for i = 1; i < 10; i++ {
feSquare(&t2, &t2)
}
feMul(&t1, &t2, &t1)
feSquare(&t2, &t1)
for i = 1; i < 50; i++ {
feSquare(&t2, &t2)
}
feMul(&t2, &t2, &t1)
feSquare(&t3, &t2)
for i = 1; i < 100; i++ {
feSquare(&t3, &t3)
}
feMul(&t2, &t3, &t2)
feSquare(&t2, &t2)
for i = 1; i < 50; i++ {
feSquare(&t2, &t2)
}
feMul(&t1, &t2, &t1)
feSquare(&t1, &t1)
for i = 1; i < 5; i++ {
feSquare(&t1, &t1)
}
feMul(out, &t1, &t0)
}
func scalarMult(out, in, base *[32]byte) {
var e [32]byte
copy(e[:], in[:])
e[0] &= 248
e[31] &= 127
e[31] |= 64
var x1, x2, z2, x3, z3, tmp0, tmp1 fieldElement
feFromBytes(&x1, base)
feOne(&x2)
feCopy(&x3, &x1)
feOne(&z3)
swap := int32(0)
for pos := 254; pos >= 0; pos-- {
b := e[pos/8] >> uint(pos&7)
b &= 1
swap ^= int32(b)
feCSwap(&x2, &x3, swap)
feCSwap(&z2, &z3, swap)
swap = int32(b)
feSub(&tmp0, &x3, &z3)
feSub(&tmp1, &x2, &z2)
feAdd(&x2, &x2, &z2)
feAdd(&z2, &x3, &z3)
feMul(&z3, &tmp0, &x2)
feMul(&z2, &z2, &tmp1)
feSquare(&tmp0, &tmp1)
feSquare(&tmp1, &x2)
feAdd(&x3, &z3, &z2)
feSub(&z2, &z3, &z2)
feMul(&x2, &tmp1, &tmp0)
feSub(&tmp1, &tmp1, &tmp0)
feSquare(&z2, &z2)
feMul121666(&z3, &tmp1)
feSquare(&x3, &x3)
feAdd(&tmp0, &tmp0, &z3)
feMul(&z3, &x1, &z2)
feMul(&z2, &tmp1, &tmp0)
}
feCSwap(&x2, &x3, swap)
feCSwap(&z2, &z3, swap)
feInvert(&z2, &z2)
feMul(&x2, &x2, &z2)
feToBytes(out, &x2)
}

@ -0,0 +1,113 @@
package curve25519
import (
"crypto/elliptic"
"math/big"
"sync"
)
var cv25519 cv25519Curve
type cv25519Curve struct {
*elliptic.CurveParams
}
func copyReverse(dst []byte, src []byte) {
// Curve 25519 multiplication functions expect scalars in reverse
// order than PGP. To keep the curve25519Curve type consistent
// with other curves, we reverse it here.
for i, j := 0, len(src)-1; j >= 0; i, j = i+1, j-1 {
dst[i] = src[j]
}
}
func (cv25519Curve) ScalarMult(x1, y1 *big.Int, scalar []byte) (x, y *big.Int) {
// Assume y1 is 0 with cv25519.
var dst [32]byte
var x1Bytes [32]byte
var scalarBytes [32]byte
copy(x1Bytes[:], x1.Bytes()[:32])
copyReverse(scalarBytes[:], scalar[:32])