[Vendor] mssqldb: 2019-11-28 -> 2020-04-28 (#11364)

update go-mssqldb 2019-11-28 (1d7a30a10f73) -> 2020-04-28 (06a60b6afbbc)
mj
6543 4 years ago committed by GitHub
parent da5e3fa299
commit 6e23a1b843
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

@ -26,7 +26,7 @@ require (
github.com/cznic/b v0.0.0-20181122101859-a26611c4d92d // indirect
github.com/cznic/mathutil v0.0.0-20181122101859-297441e03548 // indirect
github.com/cznic/strutil v0.0.0-20181122101858-275e90344537 // indirect
github.com/denisenkom/go-mssqldb v0.0.0-20191128021309-1d7a30a10f73
github.com/denisenkom/go-mssqldb v0.0.0-20200428022330-06a60b6afbbc
github.com/dgrijalva/jwt-go v3.2.0+incompatible
github.com/dustin/go-humanize v1.0.0
github.com/editorconfig/editorconfig-core-go/v2 v2.1.1
@ -102,7 +102,7 @@ require (
github.com/yohcop/openid-go v1.0.0
github.com/yuin/goldmark v1.1.25
github.com/yuin/goldmark-meta v0.0.0-20191126180153-f0638e958b60
golang.org/x/crypto v0.0.0-20200302210943-78000ba7a073
golang.org/x/crypto v0.0.0-20200429183012-4b2356b1ed79
golang.org/x/net v0.0.0-20200506145744-7e3656a0809f
golang.org/x/oauth2 v0.0.0-20200107190931-bf48bf16ab8d
golang.org/x/sys v0.0.0-20200509044756-6aff5f38e54f

@ -147,8 +147,8 @@ github.com/davecgh/go-spew v1.1.1/go.mod h1:J7Y8YcW2NihsgmVo/mv3lAwl/skON4iLHjSs
github.com/denisenkom/go-mssqldb v0.0.0-20190707035753-2be1aa521ff4/go.mod h1:zAg7JM8CkOJ43xKXIj7eRO9kmWm/TW578qo+oDO6tuM=
github.com/denisenkom/go-mssqldb v0.0.0-20190924004331-208c0a498538 h1:bpWCJ5MddHsv4Xtl3azkK89mZzd/vvut32mvAnKbyUA=
github.com/denisenkom/go-mssqldb v0.0.0-20190924004331-208c0a498538/go.mod h1:xbL0rPBG9cCiLr28tMa8zpbdarY27NDyej4t/EjAShU=
github.com/denisenkom/go-mssqldb v0.0.0-20191128021309-1d7a30a10f73 h1:OGNva6WhsKst5OZf7eZOklDztV3hwtTHovdrLHV+MsA=
github.com/denisenkom/go-mssqldb v0.0.0-20191128021309-1d7a30a10f73/go.mod h1:xbL0rPBG9cCiLr28tMa8zpbdarY27NDyej4t/EjAShU=
github.com/denisenkom/go-mssqldb v0.0.0-20200428022330-06a60b6afbbc h1:VRRKCwnzqk8QCaRC4os14xoKDdbHqqlJtJA0oc1ZAjg=
github.com/denisenkom/go-mssqldb v0.0.0-20200428022330-06a60b6afbbc/go.mod h1:xbL0rPBG9cCiLr28tMa8zpbdarY27NDyej4t/EjAShU=
github.com/dgrijalva/jwt-go v3.2.0+incompatible h1:7qlOGliEKZXTDg6OTjfoBKDXWrumCAMpl/TFQ4/5kLM=
github.com/dgrijalva/jwt-go v3.2.0+incompatible/go.mod h1:E3ru+11k8xSBh+hMPgOLZmtrrCbhqsmaPHjLKYnJCaQ=
github.com/dgryski/go-sip13 v0.0.0-20181026042036-e10d5fee7954/go.mod h1:vAd38F8PWV+bWy6jNmig1y/TA+kYO4g3RSRF0IAv0no=
@ -683,6 +683,8 @@ golang.org/x/crypto v0.0.0-20190927123631-a832865fa7ad/go.mod h1:yigFU9vqHzYiE8U
golang.org/x/crypto v0.0.0-20191011191535-87dc89f01550/go.mod h1:yigFU9vqHzYiE8UmvKecakEJjdnWj3jj499lnFckfCI=
golang.org/x/crypto v0.0.0-20200302210943-78000ba7a073 h1:xMPOj6Pz6UipU1wXLkrtqpHbR0AVFnyPEQq/wRWz9lM=
golang.org/x/crypto v0.0.0-20200302210943-78000ba7a073/go.mod h1:LzIPMQfyMNhhGPhUkYOs5KpL4U8rLKemX1yGLhDgUto=
golang.org/x/crypto v0.0.0-20200429183012-4b2356b1ed79 h1:IaQbIIB2X/Mp/DKctl6ROxz1KyMlKp4uyvL6+kQ7C88=
golang.org/x/crypto v0.0.0-20200429183012-4b2356b1ed79/go.mod h1:LzIPMQfyMNhhGPhUkYOs5KpL4U8rLKemX1yGLhDgUto=
golang.org/x/exp v0.0.0-20190121172915-509febef88a4/go.mod h1:CJ0aWSM057203Lf6IL+f9T1iT9GByDxfZKAQTCR3kQA=
golang.org/x/exp v0.0.0-20190510132918-efd6b22b2522/go.mod h1:ZjyILWgesfNpC6sMxTJOJm9Kp84zZh5NQWvqDGG3Qr8=
golang.org/x/image v0.0.0-20190227222117-0694c2d4d067/go.mod h1:kZ7UVZpmo3dzQBMxlp+ypCbDeSB+sBbTgSJuh5dn5js=

@ -18,7 +18,7 @@ Other supported formats are listed below.
### Common parameters:
* `user id` - enter the SQL Server Authentication user id or the Windows Authentication user id in the DOMAIN\User format. On Windows, if user id is empty or missing Single-Sign-On is used.
* `user id` - enter the SQL Server Authentication user id or the Windows Authentication user id in the DOMAIN\User format. On Windows, if user id is empty or missing Single-Sign-On is used. The user domain sensitive to the case which is defined in the connection string.
* `password`
* `database`
* `connection timeout` - in seconds (default is 0 for no timeout), set to 0 for no timeout. Recommended to set to 0 and use context to manage query and connection timeouts.
@ -106,6 +106,26 @@ Other supported formats are listed below.
* `odbc:server=localhost;user id=sa;password={foo{bar}` // Literal `{`, password is "foo{bar"
* `odbc:server=localhost;user id=sa;password={foo}}bar}` // Escaped `} with `}}`, password is "foo}bar"
### Azure Active Directory authentication - preview
The configuration of functionality might change in the future.
Azure Active Directory (AAD) access tokens are relatively short lived and need to be
valid when a new connection is made. Authentication is supported using a callback func that
provides a fresh and valid token using a connector:
``` golang
conn, err := mssql.NewAccessTokenConnector(
"Server=test.database.windows.net;Database=testdb",
tokenProvider)
if err != nil {
// handle errors in DSN
}
db := sql.OpenDB(conn)
```
Where `tokenProvider` is a function that returns a fresh access token or an error. None of these statements
actually trigger the retrieval of a token, this happens when the first statment is issued and a connection
is created.
## Executing Stored Procedures
To run a stored procedure, set the query text to the procedure name:

@ -0,0 +1,51 @@
// +build go1.10
package mssql
import (
"context"
"database/sql/driver"
"errors"
"fmt"
)
var _ driver.Connector = &accessTokenConnector{}
// accessTokenConnector wraps Connector and injects a
// fresh access token when connecting to the database
type accessTokenConnector struct {
Connector
accessTokenProvider func() (string, error)
}
// NewAccessTokenConnector creates a new connector from a DSN and a token provider.
// The token provider func will be called when a new connection is requested and should return a valid access token.
// The returned connector may be used with sql.OpenDB.
func NewAccessTokenConnector(dsn string, tokenProvider func() (string, error)) (driver.Connector, error) {
if tokenProvider == nil {
return nil, errors.New("mssql: tokenProvider cannot be nil")
}
conn, err := NewConnector(dsn)
if err != nil {
return nil, err
}
c := &accessTokenConnector{
Connector: *conn,
accessTokenProvider: tokenProvider,
}
return c, nil
}
// Connect returns a new database connection
func (c *accessTokenConnector) Connect(ctx context.Context) (driver.Conn, error) {
var err error
c.Connector.params.fedAuthAccessToken, err = c.accessTokenProvider()
if err != nil {
return nil, fmt.Errorf("mssql: error retrieving access token: %+v", err)
}
return c.Connector.Connect(ctx)
}

@ -37,6 +37,7 @@ type connectParams struct {
failOverPartner string
failOverPort uint64
packetSize uint16
fedAuthAccessToken string
}
func parseConnectParams(dsn string) (connectParams, error) {

@ -397,7 +397,10 @@ func (s *Stmt) Close() error {
}
func (s *Stmt) SetQueryNotification(id, options string, timeout time.Duration) {
to := uint32(timeout / time.Second)
// 2.2.5.3.1 Query Notifications Header
// https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-tds/e168d373-a7b7-41aa-b6ca-25985466a7e0
// Timeout in milliseconds in TDS protocol.
to := uint32(timeout / time.Millisecond)
if to < 1 {
to = 1
}

@ -4,11 +4,14 @@ package mssql
import (
"crypto/des"
"crypto/hmac"
"crypto/md5"
"crypto/rand"
"encoding/binary"
"errors"
"fmt"
"strings"
"time"
"unicode/utf16"
"golang.org/x/crypto/md4"
@ -198,86 +201,204 @@ func ntlmSessionResponse(clientNonce [8]byte, serverChallenge [8]byte, password
return response(hash, passwordHash)
}
func (auth *ntlmAuth) NextBytes(bytes []byte) ([]byte, error) {
if string(bytes[0:8]) != "NTLMSSP\x00" {
return nil, errorNTLM
func ntlmHashNoPadding(val string) []byte {
hash := make([]byte, 16)
h := md4.New()
h.Write(utf16le(val))
h.Sum(hash[:0])
return hash
}
if binary.LittleEndian.Uint32(bytes[8:12]) != _CHALLENGE_MESSAGE {
return nil, errorNTLM
func hmacMD5(passwordHash, data []byte) []byte {
hmacEntity := hmac.New(md5.New, passwordHash)
hmacEntity.Write(data)
return hmacEntity.Sum(nil)
}
flags := binary.LittleEndian.Uint32(bytes[20:24])
var challenge [8]byte
copy(challenge[:], bytes[24:32])
var lm, nt []byte
if (flags & _NEGOTIATE_EXTENDED_SESSIONSECURITY) != 0 {
func getNTLMv2AndLMv2ResponsePayloads(userDomain, username, password string, challenge, nonce [8]byte, targetInfoFields []byte, timestamp time.Time) (ntlmV2Payload, lmV2Payload []byte) {
// NTLMv2 response payload: http://davenport.sourceforge.net/ntlm.html#theNtlmv2Response
ntlmHash := ntlmHashNoPadding(password)
usernameAndTargetBytes := utf16le(strings.ToUpper(username) + userDomain)
ntlmV2Hash := hmacMD5(ntlmHash, usernameAndTargetBytes)
targetInfoLength := len(targetInfoFields)
blob := make([]byte, 32+targetInfoLength)
binary.BigEndian.PutUint32(blob[:4], 0x01010000)
binary.BigEndian.PutUint32(blob[4:8], 0x00000000)
binary.BigEndian.PutUint64(blob[8:16], uint64(timestamp.UnixNano()))
copy(blob[16:24], nonce[:])
binary.BigEndian.PutUint32(blob[24:28], 0x00000000)
copy(blob[28:], targetInfoFields)
binary.BigEndian.PutUint32(blob[28+targetInfoLength:], 0x00000000)
challengeLength := len(challenge)
blobLength := len(blob)
challengeAndBlob := make([]byte, challengeLength+blobLength)
copy(challengeAndBlob[:challengeLength], challenge[:])
copy(challengeAndBlob[challengeLength:], blob)
hashedChallenge := hmacMD5(ntlmV2Hash, challengeAndBlob)
ntlmV2Payload = append(hashedChallenge, blob...)
// LMv2 response payload: http://davenport.sourceforge.net/ntlm.html#theLmv2Response
ntlmV2hash := hmacMD5(ntlmHash, usernameAndTargetBytes)
challengeAndNonce := make([]byte, 16)
copy(challengeAndNonce[:8], challenge[:])
copy(challengeAndNonce[8:], nonce[:])
hashedChallenge = hmacMD5(ntlmV2hash, challengeAndNonce)
lmV2Payload = append(hashedChallenge, nonce[:]...)
return
}
func negotiateExtendedSessionSecurity(flags uint32, message []byte, challenge [8]byte, username, password, userDom string) (lm, nt []byte, err error) {
nonce := clientChallenge()
// Official specification: https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-nlmp/b38c36ed-2804-4868-a9ff-8dd3182128e4
// Unofficial walk through referenced by https://www.freetds.org/userguide/domains.htm: http://davenport.sourceforge.net/ntlm.html
if (flags & _NEGOTIATE_TARGET_INFO) != 0 {
targetInfoFields, err := getNTLMv2TargetInfoFields(message)
if err != nil {
return lm, nt, err
}
nt, lm = getNTLMv2AndLMv2ResponsePayloads(userDom, username, password, challenge, nonce, targetInfoFields, time.Now())
return lm, nt, nil
}
var lm_bytes [24]byte
copy(lm_bytes[:8], nonce[:])
lm = lm_bytes[:]
nt_bytes := ntlmSessionResponse(nonce, challenge, auth.Password)
nt = nt_bytes[:]
} else {
lm_bytes := lmResponse(challenge, auth.Password)
lm = lm_bytes[:]
nt_bytes := ntResponse(challenge, auth.Password)
nt_bytes := ntlmSessionResponse(nonce, challenge, password)
nt = nt_bytes[:]
return lm, nt, nil
}
func getNTLMv2TargetInfoFields(type2Message []byte) (info []byte, err error) {
type2MessageError := "mssql: while parsing NTLMv2 type 2 message, length %d too small for offset %d"
type2MessageLength := len(type2Message)
if type2MessageLength < 20 {
return nil, fmt.Errorf(type2MessageError, type2MessageLength, 20)
}
targetNameAllocated := binary.LittleEndian.Uint16(type2Message[14:16])
targetNameOffset := binary.LittleEndian.Uint32(type2Message[16:20])
endOfOffset := int(targetNameOffset + uint32(targetNameAllocated))
if type2MessageLength < endOfOffset {
return nil, fmt.Errorf(type2MessageError, type2MessageLength, endOfOffset)
}
targetInformationAllocated := binary.LittleEndian.Uint16(type2Message[42:44])
targetInformationDataOffset := binary.LittleEndian.Uint32(type2Message[44:48])
endOfOffset = int(targetInformationDataOffset + uint32(targetInformationAllocated))
if type2MessageLength < endOfOffset {
return nil, fmt.Errorf(type2MessageError, type2MessageLength, endOfOffset)
}
targetInformationBytes := make([]byte, targetInformationAllocated)
copy(targetInformationBytes, type2Message[targetInformationDataOffset:targetInformationDataOffset+uint32(targetInformationAllocated)])
return targetInformationBytes, nil
}
func buildNTLMResponsePayload(lm, nt []byte, flags uint32, domain, workstation, username string) ([]byte, error) {
lm_len := len(lm)
nt_len := len(nt)
domain16 := utf16le(auth.Domain)
domain16 := utf16le(domain)
domain_len := len(domain16)
user16 := utf16le(auth.UserName)
user16 := utf16le(username)
user_len := len(user16)
workstation16 := utf16le(auth.Workstation)
workstation16 := utf16le(workstation)
workstation_len := len(workstation16)
msg := make([]byte, 88+lm_len+nt_len+domain_len+user_len+workstation_len)
copy(msg, []byte("NTLMSSP\x00"))
binary.LittleEndian.PutUint32(msg[8:], _AUTHENTICATE_MESSAGE)
// Lm Challenge Response Fields
binary.LittleEndian.PutUint16(msg[12:], uint16(lm_len))
binary.LittleEndian.PutUint16(msg[14:], uint16(lm_len))
binary.LittleEndian.PutUint32(msg[16:], 88)
// Nt Challenge Response Fields
binary.LittleEndian.PutUint16(msg[20:], uint16(nt_len))
binary.LittleEndian.PutUint16(msg[22:], uint16(nt_len))
binary.LittleEndian.PutUint32(msg[24:], uint32(88+lm_len))
// Domain Name Fields
binary.LittleEndian.PutUint16(msg[28:], uint16(domain_len))
binary.LittleEndian.PutUint16(msg[30:], uint16(domain_len))
binary.LittleEndian.PutUint32(msg[32:], uint32(88+lm_len+nt_len))
// User Name Fields
binary.LittleEndian.PutUint16(msg[36:], uint16(user_len))
binary.LittleEndian.PutUint16(msg[38:], uint16(user_len))
binary.LittleEndian.PutUint32(msg[40:], uint32(88+lm_len+nt_len+domain_len))
// Workstation Fields
binary.LittleEndian.PutUint16(msg[44:], uint16(workstation_len))
binary.LittleEndian.PutUint16(msg[46:], uint16(workstation_len))
binary.LittleEndian.PutUint32(msg[48:], uint32(88+lm_len+nt_len+domain_len+user_len))
// Encrypted Random Session Key Fields
binary.LittleEndian.PutUint16(msg[52:], 0)
binary.LittleEndian.PutUint16(msg[54:], 0)
binary.LittleEndian.PutUint32(msg[56:], uint32(88+lm_len+nt_len+domain_len+user_len+workstation_len))
// Negotiate Flags
binary.LittleEndian.PutUint32(msg[60:], flags)
// Version
binary.LittleEndian.PutUint32(msg[64:], 0)
binary.LittleEndian.PutUint32(msg[68:], 0)
// MIC
binary.LittleEndian.PutUint32(msg[72:], 0)
binary.LittleEndian.PutUint32(msg[76:], 0)
binary.LittleEndian.PutUint32(msg[88:], 0)
binary.LittleEndian.PutUint32(msg[84:], 0)
// Payload
copy(msg[88:], lm)
copy(msg[88+lm_len:], nt)
copy(msg[88+lm_len+nt_len:], domain16)
copy(msg[88+lm_len+nt_len+domain_len:], user16)
copy(msg[88+lm_len+nt_len+domain_len+user_len:], workstation16)
return msg, nil
}
func (auth *ntlmAuth) NextBytes(bytes []byte) ([]byte, error) {
signature := string(bytes[0:8])
if signature != "NTLMSSP\x00" {
return nil, errorNTLM
}
messageTypeIndicator := binary.LittleEndian.Uint32(bytes[8:12])
if messageTypeIndicator != _CHALLENGE_MESSAGE {
return nil, errorNTLM
}
var challenge [8]byte
copy(challenge[:], bytes[24:32])
flags := binary.LittleEndian.Uint32(bytes[20:24])
if (flags & _NEGOTIATE_EXTENDED_SESSIONSECURITY) != 0 {
lm, nt, err := negotiateExtendedSessionSecurity(flags, bytes, challenge, auth.UserName, auth.Password, auth.Domain)
if err != nil {
return nil, err
}
return buildNTLMResponsePayload(lm, nt, flags, auth.Domain, auth.Workstation, auth.UserName)
}
lm_bytes := lmResponse(challenge, auth.Password)
lm := lm_bytes[:]
nt_bytes := ntResponse(challenge, auth.Password)
nt := nt_bytes[:]
return buildNTLMResponsePayload(lm, nt, flags, auth.Domain, auth.Workstation, auth.UserName)
}
func (auth *ntlmAuth) Free() {
}

@ -106,6 +106,8 @@ const (
preloginTHREADID = 3
preloginMARS = 4
preloginTRACEID = 5
preloginFEDAUTHREQUIRED = 6
preloginNONCEOPT = 7
preloginTERMINATOR = 0xff
)
@ -245,6 +247,12 @@ const (
fReadOnlyIntent = 32
)
// OptionFlags3
// https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-tds/773a62b6-ee89-4c02-9e5e-344882630aac
const (
fExtension = 0x10
)
type login struct {
TDSVersion uint32
PacketSize uint32
@ -269,6 +277,89 @@ type login struct {
SSPI []byte
AtchDBFile string
ChangePassword string
FeatureExt featureExts
}
type featureExts struct {
features map[byte]featureExt
}
type featureExt interface {
featureID() byte
toBytes() []byte
}
func (e *featureExts) Add(f featureExt) error {
if f == nil {
return nil
}
id := f.featureID()
if _, exists := e.features[id]; exists {
f := "Login error: Feature with ID '%v' is already present in FeatureExt block."
return fmt.Errorf(f, id)
}
if e.features == nil {
e.features = make(map[byte]featureExt)
}
e.features[id] = f
return nil
}
func (e featureExts) toBytes() []byte {
if len(e.features) == 0 {
return nil
}
var d []byte
for featureID, f := range e.features {
featureData := f.toBytes()
hdr := make([]byte, 5)
hdr[0] = featureID // FedAuth feature extension BYTE
binary.LittleEndian.PutUint32(hdr[1:], uint32(len(featureData))) // FeatureDataLen DWORD
d = append(d, hdr...)
d = append(d, featureData...) // FeatureData *BYTE
}
if d != nil {
d = append(d, 0xff) // Terminator
}
return d
}
type featureExtFedAuthSTS struct {
FedAuthEcho bool
FedAuthToken string
Nonce []byte
}
func (e *featureExtFedAuthSTS) featureID() byte {
return 0x02
}
func (e *featureExtFedAuthSTS) toBytes() []byte {
if e == nil {
return nil
}
options := byte(0x01) << 1 // 0x01 => STS bFedAuthLibrary 7BIT
if e.FedAuthEcho {
options |= 1 // fFedAuthEcho
}
d := make([]byte, 5)
d[0] = options
// looks like string in
// https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-tds/f88b63bb-b479-49e1-a87b-deda521da508
tokenBytes := str2ucs2(e.FedAuthToken)
binary.LittleEndian.PutUint32(d[1:], uint32(len(tokenBytes))) // Should be a signed int32, but since the length is relatively small, this should work
d = append(d, tokenBytes...)
if len(e.Nonce) == 32 {
d = append(d, e.Nonce...)
}
return d
}
type loginHeader struct {
@ -295,7 +386,7 @@ type loginHeader struct {
ServerNameOffset uint16
ServerNameLength uint16
ExtensionOffset uint16
ExtensionLenght uint16
ExtensionLength uint16
CtlIntNameOffset uint16
CtlIntNameLength uint16
LanguageOffset uint16
@ -357,6 +448,8 @@ func sendLogin(w *tdsBuffer, login login) error {
database := str2ucs2(login.Database)
atchdbfile := str2ucs2(login.AtchDBFile)
changepassword := str2ucs2(login.ChangePassword)
featureExt := login.FeatureExt.toBytes()
hdr := loginHeader{
TDSVersion: login.TDSVersion,
PacketSize: login.PacketSize,
@ -405,7 +498,18 @@ func sendLogin(w *tdsBuffer, login login) error {
offset += uint16(len(atchdbfile))
hdr.ChangePasswordOffset = offset
offset += uint16(len(changepassword))
hdr.Length = uint32(offset)
featureExtOffset := uint32(0)
featureExtLen := len(featureExt)
if featureExtLen > 0 {
hdr.OptionFlags3 |= fExtension
hdr.ExtensionOffset = offset
hdr.ExtensionLength = 4
offset += hdr.ExtensionLength // DWORD
featureExtOffset = uint32(offset)
}
hdr.Length = uint32(offset) + uint32(featureExtLen)
var err error
err = binary.Write(w, binary.LittleEndian, &hdr)
if err != nil {
@ -455,6 +559,16 @@ func sendLogin(w *tdsBuffer, login login) error {
if err != nil {
return err
}
if featureExtOffset > 0 {
err = binary.Write(w, binary.LittleEndian, featureExtOffset)
if err != nil {
return err
}
_, err = w.Write(featureExt)
if err != nil {
return err
}
}
return w.FinishPacket()
}
@ -844,15 +958,23 @@ initiate_connection:
AppName: p.appname,
TypeFlags: p.typeFlags,
}
auth, auth_ok := getAuth(p.user, p.password, p.serverSPN, p.workstation)
if auth_ok {
auth, authOk := getAuth(p.user, p.password, p.serverSPN, p.workstation)
switch {
case p.fedAuthAccessToken != "": // accesstoken ignores user/password
featurext := &featureExtFedAuthSTS{
FedAuthEcho: len(fields[preloginFEDAUTHREQUIRED]) > 0 && fields[preloginFEDAUTHREQUIRED][0] == 1,
FedAuthToken: p.fedAuthAccessToken,
Nonce: fields[preloginNONCEOPT],
}
login.FeatureExt.Add(featurext)
case authOk:
login.SSPI, err = auth.InitialBytes()
if err != nil {
return nil, err
}
login.OptionFlags2 |= fIntSecurity
defer auth.Free()
} else {
default:
login.UserName = p.user
login.Password = p.password
}

@ -24,6 +24,7 @@ const (
tokenInfo token = 171 // 0xAB
tokenReturnValue token = 0xAC
tokenLoginAck token = 173 // 0xad
tokenFeatureExtAck token = 174 // 0xae
tokenRow token = 209 // 0xd1
tokenNbcRow token = 210 // 0xd2
tokenEnvChange token = 227 // 0xE3
@ -447,6 +448,22 @@ func parseLoginAck(r *tdsBuffer) loginAckStruct {
return res
}
// https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-tds/2eb82f8e-11f0-46dc-b42d-27302fa4701a
func parseFeatureExtAck(r *tdsBuffer) {
// at most 1 featureAck per feature in featureExt
// go-mssqldb will add at most 1 feature, the spec defines 7 different features
for i := 0; i < 8; i++ {
featureID := r.byte() // FeatureID
if featureID == 0xff {
return
}
size := r.uint32() // FeatureAckDataLen
d := make([]byte, size)
r.ReadFull(d)
}
panic("parsed more than 7 featureAck's, protocol implementation error?")
}
// http://msdn.microsoft.com/en-us/library/dd357363.aspx
func parseColMetadata72(r *tdsBuffer) (columns []columnStruct) {
count := r.uint16()
@ -577,6 +594,8 @@ func processSingleResponse(sess *tdsSession, ch chan tokenStruct, outs map[strin
case tokenLoginAck:
loginAck := parseLoginAck(sess.buf)
ch <- loginAck
case tokenFeatureExtAck:
parseFeatureExtAck(sess.buf)
case tokenOrder:
order := parseOrder(sess.buf)
ch <- order

@ -5,6 +5,8 @@
// Package blake2b implements the BLAKE2b hash algorithm defined by RFC 7693
// and the extendable output function (XOF) BLAKE2Xb.
//
// BLAKE2b is optimized for 64-bit platforms—including NEON-enabled ARMs—and
// produces digests of any size between 1 and 64 bytes.
// For a detailed specification of BLAKE2b see https://blake2.net/blake2.pdf
// and for BLAKE2Xb see https://blake2.net/blake2x.pdf
//

@ -42,10 +42,14 @@ type Cipher struct {
// The last len bytes of buf are leftover key stream bytes from the previous
// XORKeyStream invocation. The size of buf depends on how many blocks are
// computed at a time.
// computed at a time by xorKeyStreamBlocks.
buf [bufSize]byte
len int
// overflow is set when the counter overflowed, no more blocks can be
// generated, and the next XORKeyStream call should panic.
overflow bool
// The counter-independent results of the first round are cached after they
// are computed the first time.
precompDone bool
@ -89,6 +93,7 @@ func newUnauthenticatedCipher(c *Cipher, key, nonce []byte) (*Cipher, error) {
return nil, errors.New("chacha20: wrong nonce size")
}
key, nonce = key[:KeySize], nonce[:NonceSize] // bounds check elimination hint
c.key = [8]uint32{
binary.LittleEndian.Uint32(key[0:4]),
binary.LittleEndian.Uint32(key[4:8]),
@ -139,15 +144,18 @@ func quarterRound(a, b, c, d uint32) (uint32, uint32, uint32, uint32) {
// SetCounter sets the Cipher counter. The next invocation of XORKeyStream will
// behave as if (64 * counter) bytes had been encrypted so far.
//
// To prevent accidental counter reuse, SetCounter panics if counter is
// less than the current value.
// To prevent accidental counter reuse, SetCounter panics if counter is less
// than the current value.
//
// Note that the execution time of XORKeyStream is not independent of the
// counter value.
func (s *Cipher) SetCounter(counter uint32) {
// Internally, s may buffer multiple blocks, which complicates this
// implementation slightly. When checking whether the counter has rolled
// back, we must use both s.counter and s.len to determine how many blocks
// we have already output.
outputCounter := s.counter - uint32(s.len)/blockSize
if counter < outputCounter {
if s.overflow || counter < outputCounter {
panic("chacha20: SetCounter attempted to rollback counter")
}
@ -196,34 +204,52 @@ func (s *Cipher) XORKeyStream(dst, src []byte) {
dst[i] = src[i] ^ b
}
s.len -= len(keyStream)
src = src[len(keyStream):]
dst = dst[len(keyStream):]
dst, src = dst[len(keyStream):], src[len(keyStream):]
}
if len(src) == 0 {
return
}
const blocksPerBuf = bufSize / blockSize
numBufs := (uint64(len(src)) + bufSize - 1) / bufSize
if uint64(s.counter)+numBufs*blocksPerBuf >= 1<<32 {
// If we'd need to let the counter overflow and keep generating output,
// panic immediately. If instead we'd only reach the last block, remember
// not to generate any more output after the buffer is drained.
numBlocks := (uint64(len(src)) + blockSize - 1) / blockSize
if s.overflow || uint64(s.counter)+numBlocks > 1<<32 {
panic("chacha20: counter overflow")
} else if uint64(s.counter)+numBlocks == 1<<32 {
s.overflow = true
}
// xorKeyStreamBlocks implementations expect input lengths that are a
// multiple of bufSize. Platform-specific ones process multiple blocks at a
// time, so have bufSizes that are a multiple of blockSize.
rem := len(src) % bufSize
full := len(src) - rem
full := len(src) - len(src)%bufSize
if full > 0 {
s.xorKeyStreamBlocks(dst[:full], src[:full])
}
dst, src = dst[full:], src[full:]
// If using a multi-block xorKeyStreamBlocks would overflow, use the generic
// one that does one block at a time.
const blocksPerBuf = bufSize / blockSize
if uint64(s.counter)+blocksPerBuf > 1<<32 {
s.buf = [bufSize]byte{}
numBlocks := (len(src) + blockSize - 1) / blockSize
buf := s.buf[bufSize-numBlocks*blockSize:]
copy(buf, src)
s.xorKeyStreamBlocksGeneric(buf, buf)
s.len = len(buf) - copy(dst, buf)
return
}
// If we have a partial (multi-)block, pad it for xorKeyStreamBlocks, and
// keep the leftover keystream for the next XORKeyStream invocation.
if rem > 0 {
if len(src) > 0 {
s.buf = [bufSize]byte{}
copy(s.buf[:], src[full:])
copy(s.buf[:], src)
s.xorKeyStreamBlocks(s.buf[:], s.buf[:])
s.len = bufSize - copy(dst[full:], s.buf[:])
s.len = bufSize - copy(dst, s.buf[:])
}
}
@ -260,7 +286,9 @@ func (s *Cipher) xorKeyStreamBlocksGeneric(dst, src []byte) {
s.precompDone = true
}
for i := 0; i < len(src); i += blockSize {
// A condition of len(src) > 0 would be sufficient, but this also
// acts as a bounds check elimination hint.
for len(src) >= 64 && len(dst) >= 64 {
// The remainder of the first column round.
fcr0, fcr4, fcr8, fcr12 := quarterRound(c0, c4, c8, s.counter)
@ -285,49 +313,28 @@ func (s *Cipher) xorKeyStreamBlocksGeneric(dst, src []byte) {
x3, x4, x9, x14 = quarterRound(x3, x4, x9, x14)
}
// Finally, add back the initial state to generate the key stream.
x0 += c0
x1 += c1
x2 += c2
x3 += c3
x4 += c4
x5 += c5
x6 += c6
x7 += c7
x8 += c8
x9 += c9
x10 += c10
x11 += c11
x12 += s.counter
x13 += c13
x14 += c14
x15 += c15
// Add back the initial state to generate the key stream, then
// XOR the key stream with the source and write out the result.
addXor(dst[0:4], src[0:4], x0, c0)
addXor(dst[4:8], src[4:8], x1, c1)
addXor(dst[8:12], src[8:12], x2, c2)
addXor(dst[12:16], src[12:16], x3, c3)
addXor(dst[16:20], src[16:20], x4, c4)
addXor(dst[20:24], src[20:24], x5, c5)
addXor(dst[24:28], src[24:28], x6, c6)
addXor(dst[28:32], src[28:32], x7, c7)
addXor(dst[32:36], src[32:36], x8, c8)
addXor(dst[36:40], src[36:40], x9, c9)
addXor(dst[40:44], src[40:44], x10, c10)
addXor(dst[44:48], src[44:48], x11, c11)
addXor(dst[48:52], src[48:52], x12, s.counter)
addXor(dst[52:56], src[52:56], x13, c13)
addXor(dst[56:60], src[56:60], x14, c14)
addXor(dst[60:64], src[60:64], x15, c15)
s.counter += 1
if s.counter == 0 {
panic("chacha20: internal error: counter overflow")
}
in, out := src[i:], dst[i:]
in, out = in[:blockSize], out[:blockSize] // bounds check elimination hint
// XOR the key stream with the source and write out the result.
xor(out[0:], in[0:], x0)
xor(out[4:], in[4:], x1)
xor(out[8:], in[8:], x2)
xor(out[12:], in[12:], x3)
xor(out[16:], in[16:], x4)
xor(out[20:], in[20:], x5)
xor(out[24:], in[24:], x6)
xor(out[28:], in[28:], x7)
xor(out[32:], in[32:], x8)
xor(out[36:], in[36:], x9)
xor(out[40:], in[40:], x10)
xor(out[44:], in[44:], x11)
xor(out[48:], in[48:], x12)
xor(out[52:], in[52:], x13)
xor(out[56:], in[56:], x14)
xor(out[60:], in[60:], x15)
src, dst = src[blockSize:], dst[blockSize:]
}
}

@ -13,10 +13,10 @@ const unaligned = runtime.GOARCH == "386" ||
runtime.GOARCH == "ppc64le" ||
runtime.GOARCH == "s390x"
// xor reads a little endian uint32 from src, XORs it with u and
// addXor reads a little endian uint32 from src, XORs it with (a + b) and
// places the result in little endian byte order in dst.
func xor(dst, src []byte, u uint32) {
_, _ = src[3], dst[3] // eliminate bounds checks
func addXor(dst, src []byte, a, b uint32) {
_, _ = src[3], dst[3] // bounds check elimination hint
if unaligned {
// The compiler should optimize this code into
// 32-bit unaligned little endian loads and stores.
@ -27,15 +27,16 @@ func xor(dst, src []byte, u uint32) {
v |= uint32(src[1]) << 8
v |= uint32(src[2]) << 16
v |= uint32(src[3]) << 24
v ^= u
v ^= a + b
dst[0] = byte(v)
dst[1] = byte(v >> 8)
dst[2] = byte(v >> 16)
dst[3] = byte(v >> 24)
} else {
dst[0] = src[0] ^ byte(u)
dst[1] = src[1] ^ byte(u>>8)
dst[2] = src[2] ^ byte(u>>16)
dst[3] = src[3] ^ byte(u>>24)
a += b
dst[0] = src[0] ^ byte(a)
dst[1] = src[1] ^ byte(a>>8)
dst[2] = src[2] ^ byte(a>>16)
dst[3] = src[3] ^ byte(a>>24)
}
}

@ -2,10 +2,8 @@
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build !amd64,!ppc64le gccgo purego
// +build !amd64,!ppc64le,!s390x gccgo purego
package poly1305
type mac struct{ macGeneric }
func newMAC(key *[32]byte) mac { return mac{newMACGeneric(key)} }

@ -26,7 +26,9 @@ const TagSize = 16
// 16-byte result into out. Authenticating two different messages with the same
// key allows an attacker to forge messages at will.
func Sum(out *[16]byte, m []byte, key *[32]byte) {
sum(out, m, key)
h := New(key)
h.Write(m)
h.Sum(out[:0])
}
// Verify returns true if mac is a valid authenticator for m with the given key.
@ -46,10 +48,9 @@ func Verify(mac *[16]byte, m []byte, key *[32]byte) bool {
// two different messages with the same key allows an attacker
// to forge messages at will.
func New(key *[32]byte) *MAC {
return &MAC{
mac: newMAC(key),
finalized: false,
}
m := &MAC{}
initialize(key, &m.macState)
return m
}
// MAC is an io.Writer computing an authentication tag
@ -58,7 +59,7 @@ func New(key *[32]byte) *MAC {
// MAC cannot be used like common hash.Hash implementations,
// because using a poly1305 key twice breaks its security.
// Therefore writing data to a running MAC after calling
// Sum causes it to panic.
// Sum or Verify causes it to panic.
type MAC struct {
mac // platform-dependent implementation
@ -71,10 +72,10 @@ func (h *MAC) Size() int { return TagSize }
// Write adds more data to the running message authentication code.
// It never returns an error.
//
// It must not be called after the first call of Sum.
// It must not be called after the first call of Sum or Verify.
func (h *MAC) Write(p []byte) (n int, err error) {
if h.finalized {
panic("poly1305: write to MAC after Sum")
panic("poly1305: write to MAC after Sum or Verify")
}
return h.mac.Write(p)
}
@ -87,3 +88,12 @@ func (h *MAC) Sum(b []byte) []byte {
h.finalized = true
return append(b, mac[:]...)
}
// Verify returns whether the authenticator of all data written to
// the message authentication code matches the expected value.
func (h *MAC) Verify(expected []byte) bool {
var mac [TagSize]byte
h.mac.Sum(&mac)
h.finalized = true
return subtle.ConstantTimeCompare(expected, mac[:]) == 1
}

@ -9,17 +9,6 @@ package poly1305
//go:noescape
func update(state *macState, msg []byte)
func sum(out *[16]byte, m []byte, key *[32]byte) {
h := newMAC(key)
h.Write(m)
h.Sum(out)
}
func newMAC(key *[32]byte) (h mac) {
initialize(key, &h.r, &h.s)
return
}
// mac is a wrapper for macGeneric that redirects calls that would have gone to
// updateGeneric to update.
//

@ -31,16 +31,18 @@ func sumGeneric(out *[TagSize]byte, msg []byte, key *[32]byte) {
h.Sum(out)
}
func newMACGeneric(key *[32]byte) (h macGeneric) {
initialize(key, &h.r, &h.s)
return
func newMACGeneric(key *[32]byte) macGeneric {
m := macGeneric{}
initialize(key, &m.macState)
return m
}
// macState holds numbers in saturated 64-bit little-endian limbs. That is,
// the value of [x0, x1, x2] is x[0] + x[1] * 2⁶⁴ + x[2] * 2¹²⁸.
type macState struct {
// h is the main accumulator. It is to be interpreted modulo 2¹³⁰ - 5, but
// can grow larger during and after rounds.
// can grow larger during and after rounds. It must, however, remain below
// 2 * (2¹³⁰ - 5).
h [3]uint64
// r and s are the private key components.
r [2]uint64
@ -97,11 +99,12 @@ const (
rMask1 = 0x0FFFFFFC0FFFFFFC
)
func initialize(key *[32]byte, r, s *[2]uint64) {
r[0] = binary.LittleEndian.Uint64(key[0:8]) & rMask0
r[1] = binary.LittleEndian.Uint64(key[8:16]) & rMask1
s[0] = binary.LittleEndian.Uint64(key[16:24])
s[1] = binary.LittleEndian.Uint64(key[24:32])
// initialize loads the 256-bit key into the two 128-bit secret values r and s.
func initialize(key *[32]byte, m *macState) {
m.r[0] = binary.LittleEndian.Uint64(key[0:8]) & rMask0
m.r[1] = binary.LittleEndian.Uint64(key[8:16]) & rMask1
m.s[0] = binary.LittleEndian.Uint64(key[16:24])
m.s[1] = binary.LittleEndian.Uint64(key[24:32])
}
// uint128 holds a 128-bit number as two 64-bit limbs, for use with the

@ -1,13 +0,0 @@
// Copyright 2018 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build s390x,!go1.11 !amd64,!s390x,!ppc64le gccgo purego
package poly1305
func sum(out *[TagSize]byte, msg []byte, key *[32]byte) {
h := newMAC(key)
h.Write(msg)
h.Sum(out)
}

@ -9,17 +9,6 @@ package poly1305
//go:noescape
func update(state *macState, msg []byte)
func sum(out *[16]byte, m []byte, key *[32]byte) {
h := newMAC(key)
h.Write(m)
h.Sum(out)
}
func newMAC(key *[32]byte) (h mac) {
initialize(key, &h.r, &h.s)
return
}
// mac is a wrapper for macGeneric that redirects calls that would have gone to
// updateGeneric to update.
//

@ -2,7 +2,7 @@
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build go1.11,!gccgo,!purego
// +build !gccgo,!purego
package poly1305
@ -10,30 +10,66 @@ import (
"golang.org/x/sys/cpu"
)
// poly1305vx is an assembly implementation of Poly1305 that uses vector
// updateVX is an assembly implementation of Poly1305 that uses vector
// instructions. It must only be called if the vector facility (vx) is
// available.
//go:noescape
func poly1305vx(out *[16]byte, m *byte, mlen uint64, key *[32]byte)
func updateVX(state *macState, msg []byte)
// poly1305vmsl is an assembly implementation of Poly1305 that uses vector
// instructions, including VMSL. It must only be called if the vector facility (vx) is
// available and if VMSL is supported.
//go:noescape
func poly1305vmsl(out *[16]byte, m *byte, mlen uint64, key *[32]byte)
// mac is a replacement for macGeneric that uses a larger buffer and redirects
// calls that would have gone to updateGeneric to updateVX if the vector
// facility is installed.
//
// A larger buffer is required for good performance because the vector
// implementation has a higher fixed cost per call than the generic
// implementation.
type mac struct {
macState
func sum(out *[16]byte, m []byte, key *[32]byte) {
if cpu.S390X.HasVX {
var mPtr *byte
if len(m) > 0 {
mPtr = &m[0]
buffer [16 * TagSize]byte // size must be a multiple of block size (16)
offset int
}
func (h *mac) Write(p []byte) (int, error) {
nn := len(p)
if h.offset > 0 {
n := copy(h.buffer[h.offset:], p)
if h.offset+n < len(h.buffer) {
h.offset += n
return nn, nil
}
if cpu.S390X.HasVXE && len(m) > 256 {
poly1305vmsl(out, mPtr, uint64(len(m)), key)
p = p[n:]
h.offset = 0
if cpu.S390X.HasVX {
updateVX(&h.macState, h.buffer[:])
} else {
poly1305vx(out, mPtr, uint64(len(m)), key)
updateGeneric(&h.macState, h.buffer[:])
}
}
tail := len(p) % len(h.buffer) // number of bytes to copy into buffer
body := len(p) - tail // number of bytes to process now
if body > 0 {
if cpu.S390X.HasVX {
updateVX(&h.macState, p[:body])
} else {
sumGeneric(out, m, key)
updateGeneric(&h.macState, p[:body])
}
}
h.offset = copy(h.buffer[:], p[body:]) // copy tail bytes - can be 0
return nn, nil
}
func (h *mac) Sum(out *[TagSize]byte) {
state := h.macState
remainder := h.buffer[:h.offset]
// Use the generic implementation if we have 2 or fewer blocks left
// to sum. The vector implementation has a higher startup time.
if cpu.S390X.HasVX && len(remainder) > 2*TagSize {
updateVX(&state, remainder)
} else if len(remainder) > 0 {
updateGeneric(&state, remainder)
}
finalize(out, &state.h, &state.s)
}

@ -2,115 +2,187 @@
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build go1.11,!gccgo,!purego
// +build !gccgo,!purego
#include "textflag.h"
// Implementation of Poly1305 using the vector facility (vx).
// constants
#define MOD26 V0
#define EX0 V1
#define EX1 V2
#define EX2 V3
// temporaries
#define T_0 V4
#define T_1 V5
#define T_2 V6
#define T_3 V7
#define T_4 V8
// key (r)
#define R_0 V9
#define R_1 V10
#define R_2 V11
#define R_3 V12
#define R_4 V13
#define R5_1 V14
#define R5_2 V15
#define R5_3 V16
#define R5_4 V17
#define RSAVE_0 R5
#define RSAVE_1 R6
#define RSAVE_2 R7
#define RSAVE_3 R8
#define RSAVE_4 R9
#define R5SAVE_1 V28
#define R5SAVE_2 V29
#define R5SAVE_3 V30
#define R5SAVE_4 V31
// message block
#define F_0 V18
#define F_1 V19
#define F_2 V20
#define F_3 V21
#define F_4 V22
// accumulator
#define H_0 V23
#define H_1 V24
#define H_2 V25
#define H_3 V26
#define H_4 V27
GLOBL ·keyMask<>(SB), RODATA, $16
DATA ·keyMask<>+0(SB)/8, $0xffffff0ffcffff0f
DATA ·keyMask<>+8(SB)/8, $0xfcffff0ffcffff0f
GLOBL ·bswapMask<>(SB), RODATA, $16
DATA ·bswapMask<>+0(SB)/8, $0x0f0e0d0c0b0a0908
DATA ·bswapMask<>+8(SB)/8, $0x0706050403020100
GLOBL ·constants<>(SB), RODATA, $64
// MOD26
DATA ·constants<>+0(SB)/8, $0x3ffffff
DATA ·constants<>+8(SB)/8, $0x3ffffff
// This implementation of Poly1305 uses the vector facility (vx)
// to process up to 2 blocks (32 bytes) per iteration using an
// algorithm based on the one described in:
//
// NEON crypto, Daniel J. Bernstein & Peter Schwabe
// https://cryptojedi.org/papers/neoncrypto-20120320.pdf
//
// This algorithm uses 5 26-bit limbs to represent a 130-bit
// value. These limbs are, for the most part, zero extended and
// placed into 64-bit vector register elements. Each vector
// register is 128-bits wide and so holds 2 of these elements.
// Using 26-bit limbs allows us plenty of headroom to accomodate
// accumulations before and after multiplication without
// overflowing either 32-bits (before multiplication) or 64-bits
// (after multiplication).
//
// In order to parallelise the operations required to calculate
// the sum we use two separate accumulators and then sum those
// in an extra final step. For compatibility with the generic
// implementation we perform this summation at the end of every
// updateVX call.
//
// To use two accumulators we must multiply the message blocks
// by r² rather than r. Only the final message block should be
// multiplied by r.
//
// Example:
//
// We want to calculate the sum (h) for a 64 byte message (m):
//
// h = m[0:16]r + m[16:32]r³ + m[32:48]r² + m[48:64]r
//
// To do this we split the calculation into the even indices
// and odd indices of the message. These form our SIMD 'lanes':
//
// h = m[ 0:16]r + m[32:48]r² + <- lane 0
// m[16:32]r³ + m[48:64]r <- lane 1
//
// To calculate this iteratively we refactor so that both lanes
// are written in terms of r² and r:
//
// h = (m[ 0:16]r² + m[32:48])r² + <- lane 0
// (m[16:32]r² + m[48:64])r <- lane 1
// ^ ^
// | coefficients for second iteration
// coefficients for first iteration
//
// So in this case we would have two iterations. In the first
// both lanes are multiplied by r². In the second only the
// first lane is multiplied by r² and the second lane is
// instead multiplied by r. This gives use the odd and even
// powers of r that we need from the original equation.
//
// Notation:
//
// h - accumulator
// r - key
// m - message
//
// [a, b] - SIMD register holding two 64-bit values
// [a, b, c, d] - SIMD register holding four 32-bit values
// x[n] - limb n of variable x with bit width i
//
// Limbs are expressed in little endian order, so for 26-bit
// limbs x[4] will be the most significant limb and x[0]
// will be the least significant limb.
// masking constants
#define MOD24 V0 // [0x0000000000ffffff, 0x0000000000ffffff] - mask low 24-bits
#define MOD26 V1 // [0x0000000003ffffff, 0x0000000003ffffff] - mask low 26-bits
// expansion constants (see EXPAND macro)
#define EX0 V2
#define EX1 V3
#define EX2 V4
// key (r², r or 1 depending on context)
#define R_0 V5
#define R_1 V6
#define R_2 V7
#define R_3 V8
#define R_4 V9
// precalculated coefficients (5r², 5r or 0 depending on context)
#define R5_1 V10
#define R5_2 V11
#define R5_3 V12
#define R5_4 V13
// message block (m)
#define M_0 V14
#define M_1 V15
#define M_2 V16
#define M_3 V17
#define M_4 V18
// accumulator (h)
#define H_0 V19
#define H_1 V20
#define H_2 V21
#define H_3 V22
#define H_4 V23
// temporary registers (for short-lived values)
#define T_0 V24
#define T_1 V25
#define T_2 V26
#define T_3 V27
#define T_4 V28
GLOBL ·constants<>(SB), RODATA, $0x30
// EX0
DATA ·constants<>+16(SB)/8, $0x0006050403020100
DATA ·constants<>+24(SB)/8, $0x1016151413121110
DATA ·constants<>+0x00(SB)/8, $0x0006050403020100
DATA ·constants<>+0x08(SB)/8, $0x1016151413121110
// EX1
DATA ·constants<>+32(SB)/8, $0x060c0b0a09080706
DATA ·constants<>+40(SB)/8, $0x161c1b1a19181716
DATA ·constants<>+0x10(SB)/8, $0x060c0b0a09080706
DATA ·constants<>+0x18(SB)/8, $0x161c1b1a19181716
// EX2
DATA ·constants<>+48(SB)/8, $0x0d0d0d0d0d0f0e0d
DATA ·constants<>+56(SB)/8, $0x1d1d1d1d1d1f1e1d
// h = (f*g) % (2**130-5) [partial reduction]
DATA ·constants<>+0x20(SB)/8, $0x0d0d0d0d0d0f0e0d
DATA ·constants<>+0x28(SB)/8, $0x1d1d1d1d1d1f1e1d
// MULTIPLY multiplies each lane of f and g, partially reduced
// modulo 2¹³ - 5. The result, h, consists of partial products
// in each lane that need to be reduced further to produce the
// final result.
//
// h = (fg) % 2¹³ + (5fg) / 2¹³
//
// Note that the multiplication by 5 of the high bits is
// achieved by precalculating the multiplication of four of the
// g coefficients by 5. These are g51-g54.
#define MULTIPLY(f0, f1, f2, f3, f4, g0, g1, g2, g3, g4, g51, g52, g53, g54, h0, h1, h2, h3, h4) \
VMLOF f0, g0, h0 \
VMLOF f0, g1, h1 \
VMLOF f0, g2, h2 \
VMLOF f0, g3, h3 \
VMLOF f0, g1, h1 \
VMLOF f0, g4, h4 \
VMLOF f0, g2, h2 \
VMLOF f1, g54, T_0 \
VMLOF f1, g0, T_1 \
VMLOF f1, g1, T_2 \
VMLOF f1, g2, T_3 \
VMLOF f1, g0, T_1 \
VMLOF f1, g3, T_4 \
VMLOF f1, g1, T_2 \
VMALOF f2, g53, h0, h0 \
VMALOF f2, g54, h1, h1 \
VMALOF f2, g0, h2, h2 \
VMALOF f2, g1, h3, h3 \
VMALOF f2, g54, h1, h1 \
VMALOF f2, g2, h4, h4 \
VMALOF f2, g0, h2, h2 \
VMALOF f3, g52, T_0, T_0 \
VMALOF f3, g53, T_1, T_1 \
VMALOF f3, g54, T_2, T_2 \
VMALOF f3, g0, T_3, T_3 \
VMALOF f3, g53, T_1, T_1 \
VMALOF f3, g1, T_4, T_4 \
VMALOF f3, g54, T_2, T_2 \
VMALOF f4, g51, h0, h0 \
VMALOF f4, g52, h1, h1 \
VMALOF f4, g53, h2, h2 \
VMALOF f4, g54, h3, h3 \
VMALOF f4, g52, h1, h1 \
VMALOF f4, g0, h4, h4 \
VMALOF f4, g53, h2, h2 \
VAG T_0, h0, h0 \
VAG T_1, h1, h1 \
VAG T_2, h2, h2 \
VAG T_3, h3, h3 \
VAG T_4, h4, h4
// carry h0->h1 h3->h4, h1->h2 h4->h0, h0->h1 h2->h3, h3->h4
VAG T_1, h1, h1 \
VAG T_4, h4, h4 \
VAG T_2, h2, h2
// REDUCE performs the following carry operations in four
// stages, as specified in Bernstein & Schwabe:
//
// 1: h[0]->h[1] h[3]->h[4]
// 2: h[1]->h[2] h[4]->h[0]
// 3: h[0]->h[1] h[2]->h[3]
// 4: h[3]->h[4]
//
// The result is that all of the limbs are limited to 26-bits
// except for h[1] and h[4] which are limited to 27-bits.
//
// Note that although each limb is aligned at 26-bit intervals
// they may contain values that exceed 2² - 1, hence the need
// to carry the excess bits in each limb.
#define REDUCE(h0, h1, h2, h3, h4) \
VESRLG $26, h0, T_0 \
VESRLG $26, h3, T_1 \
@ -136,144 +208,155 @@ DATA ·constants<>+56(SB)/8, $0x1d1d1d1d1d1f1e1d
VN MOD26, h3, h3 \
VAG T_2, h4, h4
// expand in0 into d[0] and in1 into d[1]
// EXPAND splits the 128-bit little-endian values in0 and in1
// into 26-bit big-endian limbs and places the results into
// the first and second lane of d[0:4] respectively.
//
// The EX0, EX1 and EX2 constants are arrays of byte indices
// for permutation. The permutation both reverses the bytes
// in the input and ensures the bytes are copied into the
// destination limb ready to be shifted into their final
// position.
#define EXPAND(in0, in1, d0, d1, d2, d3, d4) \
VGBM $0x0707, d1 \ // d1=tmp
VPERM in0, in1, EX2, d4 \
VPERM in0, in1, EX0, d0 \
VPERM in0, in1, EX1, d2 \
VN d1, d4, d4 \
VPERM in0, in1, EX2, d4 \
VESRLG $26, d0, d1 \
VESRLG $30, d2, d3 \
VESRLG $4, d2, d2 \
VN MOD26, d0, d0 \
VN MOD26, d1, d1 \
VN MOD26, d2, d2 \
VN MOD26, d3, d3
// pack h4:h0 into h1:h0 (no carry)
#define PACK(h0, h1, h2, h3, h4) \
VESLG $26, h1, h1 \
VESLG $26, h3, h3 \
VO h0, h1, h0 \
VO h2, h3, h2 \
VESLG $4, h2, h2 \
VLEIB $7, $48, h1 \
VSLB h1, h2, h2 \
VO h0, h2, h0 \
VLEIB $7, $104, h1 \
VSLB h1, h4, h3 \
VO h3, h0, h0 \
VLEIB $7, $24, h1 \
VSRLB h1, h4, h1
// if h > 2**130-5 then h -= 2**130-5
#define MOD(h0, h1, t0, t1, t2) \
VZERO t0 \
VLEIG $1, $5, t0 \
VACCQ h0, t0, t1 \
VAQ h0, t0, t0 \
VONE t2 \
VLEIG $1, $-4, t2 \
VAQ t2, t1, t1 \
VACCQ h1, t1, t1 \
VONE t2 \
VAQ t2, t1, t1 \
VN h0, t1, t2 \
VNC t0, t1, t1 \
VO t1, t2, h0
// func poly1305vx(out *[16]byte, m *byte, mlen uint64, key *[32]key)
TEXT ·poly1305vx(SB), $0-32
// This code processes up to 2 blocks (32 bytes) per iteration
// using the algorithm described in:
// NEON crypto, Daniel J. Bernstein & Peter Schwabe
// https://cryptojedi.org/papers/neoncrypto-20120320.pdf
LMG out+0(FP), R1, R4 // R1=out, R2=m, R3=mlen, R4=key
// load MOD26, EX0, EX1 and EX2
VN MOD26, d0, d0 \ // [in0[0], in1[0]]
VN MOD26, d3, d3 \ // [in0[3], in1[3]]
VN MOD26, d1, d1 \ // [in0[1], in1[1]]
VN MOD24, d4, d4 \ // [in0[4], in1[4]]
VN MOD26, d2, d2 // [in0[2], in1[2]]
// func updateVX(state *macState, msg []byte)
TEXT ·updateVX(SB), NOSPLIT, $0
MOVD state+0(FP), R1
LMG msg+8(FP), R2, R3 // R2=msg_base, R3=msg_len
// load EX0, EX1 and EX2
MOVD $·constants<>(SB), R5
VLM (R5), MOD26, EX2
// setup r
VL (R4), T_0
MOVD $·keyMask<>(SB), R6
VL (R6), T_1
VN T_0, T_1, T_0
EXPAND(T_0, T_0, R_0, R_1, R_2, R_3, R_4)
// setup r*5
VLEIG $0, $5, T_0
VLEIG $1, $5, T_0
// store r (for final block)
VMLOF T_0, R_1, R5SAVE_1
VMLOF T_0, R_2, R5SAVE_2
VMLOF T_0, R_3, R5SAVE_3
VMLOF T_0, R_4, R5SAVE_4
VLGVG $0, R_0, RSAVE_0
VLGVG $0, R_1, RSAVE_1
VLGVG $0, R_2, RSAVE_2
VLGVG $0, R_3, RSAVE_3
VLGVG $0, R_4, RSAVE_4
// skip r**2 calculation
VLM (R5), EX0, EX2
// generate masks
VGMG $(64-24), $63, MOD24 // [0x00ffffff, 0x00ffffff]
VGMG $(64-26), $63, MOD26 // [0x03ffffff, 0x03ffffff]
// load h (accumulator) and r (key) from state
VZERO T_1 // [0, 0]
VL 0(R1), T_0 // [h[0], h[1]]
VLEG $0, 16(R1), T_1 // [h[2], 0]
VL 24(R1), T_2 // [r[0], r[1]]
VPDI $0, T_0, T_2, T_3 // [h[0], r[0]]
VPDI $5, T_0, T_2, T_4 // [h[1], r[1]]
// unpack h and r into 26-bit limbs
// note: h[2] may have the low 3 bits set, so h[4] is a 27-bit value
VN MOD26, T_3, H_0 // [h[0], r[0]]
VZERO H_1 // [0, 0]
VZERO H_3 // [0, 0]
VGMG $(64-12-14), $(63-12), T_0 // [0x03fff000, 0x03fff000] - 26-bit mask with low 12 bits masked out
VESLG $24, T_1, T_1 // [h[2]<<24, 0]
VERIMG $-26&63, T_3, MOD26, H_1 // [h[1], r[1]]
VESRLG $+52&63, T_3, H_2 // [h[2], r[2]] - low 12 bits only
VERIMG $-14&63, T_4, MOD26, H_3 // [h[1], r[1]]
VESRLG $40, T_4, H_4 // [h[4], r[4]] - low 24 bits only
VERIMG $+12&63, T_4, T_0, H_2 // [h[2], r[2]] - complete
VO T_1, H_4, H_4 // [h[4], r[4]] - complete
// replicate r across all 4 vector elements
VREPF $3, H_0, R_0 // [r[0], r[0], r[0], r[0]]
VREPF $3, H_1, R_1 // [r[1], r[1], r[1], r[1]]
VREPF $3, H_2, R_2 // [r[2], r[2], r[2], r[2]]
VREPF $3, H_3, R_3 // [r[3], r[3], r[3], r[3]]
VREPF $3, H_4, R_4 // [r[4], r[4], r[4], r[4]]
// zero out lane 1 of h
VLEIG $1, $0, H_0 // [h[0], 0]
VLEIG $1, $0, H_1 // [h[1], 0]
VLEIG $1, $0, H_2 // [h[2], 0]
VLEIG $1, $0, H_3 // [h[3], 0]
VLEIG $1, $0, H_4 // [h[4], 0]
// calculate 5r (ignore least significant limb)
VREPIF $5, T_0
VMLF T_0, R_1, R5_1 // [5r[1], 5r[1], 5r[1], 5r[1]]
VMLF T_0, R_2, R5_2 // [5r[2], 5r[2], 5r[2], 5r[2]]
VMLF T_0, R_3, R5_3 // [5r[3], 5r[3], 5r[3], 5r[3]]
VMLF T_0, R_4, R5_4 // [5r[4], 5r[4], 5r[4], 5r[4]]
// skip r² calculation if we are only calculating one block
CMPBLE R3, $16, skip
// calculate r**2
MULTIPLY(R_0, R_1, R_2, R_3, R_4, R_0, R_1, R_2, R_3, R_4, R5SAVE_1, R5SAVE_2, R5SAVE_3, R5SAVE_4, H_0, H_1, H_2, H_3, H_4)
REDUCE(H_0, H_1, H_2, H_3, H_4)
VLEIG $0, $5, T_0
VLEIG $1, $5, T_0
VMLOF T_0, H_1, R5_1
VMLOF T_0, H_2, R5_2
VMLOF T_0, H_3, R5_3
VMLOF T_0, H_4, R5_4
VLR H_0, R_0
VLR H_1, R_1
VLR H_2, R_2
VLR H_3, R_3
VLR H_4, R_4
// initialize h
VZERO H_0
VZERO H_1
VZERO H_2
VZERO H_3
VZERO H_4
// calculate r²
MULTIPLY(R_0, R_1, R_2, R_3, R_4, R_0, R_1, R_2, R_3, R_4, R5_1, R5_2, R5_3, R5_4, M_0, M_1, M_2, M_3, M_4)
REDUCE(M_0, M_1, M_2, M_3, M_4)
VGBM $0x0f0f, T_0
VERIMG $0, M_0, T_0, R_0 // [r[0], r²[0], r[0], r²[0]]
VERIMG $0, M_1, T_0, R_1 // [r[1], r²[1], r[1], r²[1]]
VERIMG $0, M_2, T_0, R_2 // [r[2], r²[2], r[2], r²[2]]
VERIMG $0, M_3, T_0, R_3 // [r[3], r²[3], r[3], r²[3]]
VERIMG $0, M_4, T_0, R_4 // [r[4], r²[4], r[4], r²[4]]
// calculate 5r² (ignore least significant limb)
VREPIF $5, T_0
VMLF T_0, R_1, R5_1 // [5r[1], 5r²[1], 5r[1], 5r²[1]]
VMLF T_0, R_2, R5_2 // [5r[2], 5r²[2], 5r[2], 5r²[2]]
VMLF T_0, R_3, R5_3 // [5r[3], 5r²[3], 5r[3], 5r²[3]]
VMLF T_0, R_4, R5_4 // [5r[4], 5r²[4], 5r[4], 5r²[4]]
loop:
CMPBLE R3, $32, b2
CMPBLE R3, $32, b2 // 2 or fewer blocks remaining, need to change key coefficients
// load next 2 blocks from message
VLM (R2), T_0, T_1
// update message slice
SUB $32, R3
MOVD $32(R2), R2
EXPAND(T_0, T_1, F_0, F_1, F_2, F_3, F_4)
VLEIB $4, $1, F_4
VLEIB $12, $1, F_4
// unpack message blocks into 26-bit big-endian limbs
EXPAND(T_0, T_1, M_0, M_1, M_2, M_3, M_4)
// add 2¹² to each message block value
VLEIB $4, $1, M_4
VLEIB $12, $1, M_4
multiply:
VAG H_0, F_0, F_0
VAG H_1, F_1, F_1
VAG H_2, F_2, F_2
VAG H_3, F_3, F_3
VAG H_4, F_4, F_4
MULTIPLY(F_0, F_1, F_2, F_3, F_4, R_0, R_1, R_2, R_3, R_4, R5_1, R5_2, R5_3, R5_4, H_0, H_1, H_2, H_3, H_4)
// accumulate the incoming message
VAG H_0, M_0, M_0
VAG H_3, M_3, M_3
VAG H_1, M_1, M_1
VAG H_4, M_4, M_4
VAG H_2, M_2, M_2
// multiply the accumulator by the key coefficient
MULTIPLY(M_0, M_1, M_2, M_3, M_4, R_0, R_1, R_2, R_3, R_4, R5_1, R5_2, R5_3, R5_4, H_0, H_1, H_2, H_3, H_4)
// carry and partially reduce the partial products
REDUCE(H_0, H_1, H_2, H_3, H_4)
CMPBNE R3, $0, loop
finish:
// sum vectors
// sum lane 0 and lane 1 and put the result in lane 1
VZERO T_0
VSUMQG H_0, T_0, H_0
VSUMQG H_1, T_0, H_1
VSUMQG H_2, T_0, H_2
VSUMQG H_3, T_0, H_3
VSUMQG H_1, T_0, H_1
VSUMQG H_4, T_0, H_4
VSUMQG H_2, T_0, H_2
// h may be >= 2*(2**130-5) so we need to reduce it again
// reduce again after summation
// TODO(mundaym): there might be a more efficient way to do this
// now that we only have 1 active lane. For example, we could
// simultaneously pack the values as we reduce them.
REDUCE(H_0, H_1, H_2, H_3, H_4)
// carry h1->h4
// carry h[1] through to h[4] so that only h[4] can exceed 2² - 1
// TODO(mundaym): in testing this final carry was unnecessary.
// Needs a proof before it can be removed though.
VESRLG $26, H_1, T_1
VN MOD26, H_1, H_1
VAQ T_1, H_2, H_2
@ -284,95 +367,137 @@ finish:
VN MOD26, H_3, H_3
VAQ T_3, H_4, H_4
// h is now < 2*(2**130-5)
// pack h into h1 (hi) and h0 (lo)
PACK(H_0, H_1, H_2, H_3, H_4)
// if h > 2**130-5 then h -= 2**130-5
MOD(H_0, H_1, T_0, T_1, T_2)
// h += s
MOVD $·bswapMask<>(SB), R5
VL (R5), T_1
VL 16(R4), T_0
VPERM T_0, T_0, T_1, T_0 // reverse bytes (to big)
VAQ T_0, H_0, H_0
VPERM H_0, H_0, T_1, H_0 // reverse bytes (to little)
VST H_0, (R1)
// h is now < 2(2¹³ - 5)
// Pack each lane in h[0:4] into h[0:1].
VESLG $26, H_1, H_1
VESLG $26, H_3, H_3
VO H_0, H_1, H_0
VO H_2, H_3, H_2
VESLG $4, H_2, H_2
VLEIB $7, $48, H_1
VSLB H_1, H_2, H_2
VO H_0, H_2, H_0
VLEIB $7, $104, H_1
VSLB H_1, H_4, H_3
VO H_3, H_0, H_0
VLEIB $7, $24, H_1
VSRLB H_1, H_4, H_1
// update state
VSTEG $1, H_0, 0(R1)
VSTEG $0, H_0, 8(R1)
VSTEG $1, H_1, 16(R1)
RET
b2:
b2: // 2 or fewer blocks remaining
CMPBLE R3, $16, b1
// 2 blocks remaining
SUB $17, R3
VL (R2), T_0
VLL R3, 16(R2), T_1
ADD $1, R3
// Load the 2 remaining blocks (17-32 bytes remaining).
MOVD $-17(R3), R0 // index of final byte to load modulo 16
VL (R2), T_0 // load full 16 byte block
VLL R0, 16(R2), T_1 // load final (possibly partial) block and pad with zeros to 16 bytes
// The Poly1305 algorithm requires that a 1 bit be appended to
// each message block. If the final block is less than 16 bytes
// long then it is easiest to insert the 1 before the message
// block is split into 26-bit limbs. If, on the other hand, the
// final message block is 16 bytes long then we append the 1 bit
// after expansion as normal.
MOVBZ $1, R0
CMPBEQ R3, $16, 2(PC)
VLVGB R3, R0, T_1
EXPAND(T_0, T_1, F_0, F_1, F_2, F_3, F_4)
MOVD $-16(R3), R3 // index of byte in last block to insert 1 at (could be 16)
CMPBEQ R3, $16, 2(PC) // skip the insertion if the final block is 16 bytes long
VLVGB R3, R0, T_1 // insert 1 into the byte at index R3
// Split both blocks into 26-bit limbs in the appropriate lanes.
EXPAND(T_0, T_1, M_0, M_1, M_2, M_3, M_4)
// Append a 1 byte to the end of the second to last block.
VLEIB $4, $1, M_4
// Append a 1 byte to the end of the last block only if it is a
// full 16 byte block.
CMPBNE R3, $16, 2(PC)
VLEIB $12, $1, F_4
VLEIB $4, $1, F_4
// setup [r²,r]
VLVGG $1, RSAVE_0, R_0
VLVGG $1, RSAVE_1, R_1
VLVGG $1, RSAVE_2, R_2
VLVGG $1, RSAVE_3, R_3
VLVGG $1, RSAVE_4, R_4
VPDI $0, R5_1, R5SAVE_1, R5_1
VPDI $0, R5_2, R5SAVE_2, R5_2
VPDI $0, R5_3, R5SAVE_3, R5_3
VPDI $0, R5_4, R5SAVE_4, R5_4
VLEIB $12, $1, M_4
// Finally, set up the coefficients for the final multiplication.
// We have previously saved r and 5r in the 32-bit even indexes
// of the R_[0-4] and R5_[1-4] coefficient registers.
//
// We want lane 0 to be multiplied by r² so that can be kept the
// same. We want lane 1 to be multiplied by r so we need to move
// the saved r value into the 32-bit odd index in lane 1 by
// rotating the 64-bit lane by 32.
VGBM $0x00ff, T_0 // [0, 0xffffffffffffffff] - mask lane 1 only
VERIMG $32, R_0, T_0, R_0 // [_, r²[0], _, r[0]]
VERIMG $32, R_1, T_0, R_1 // [_, r²[1], _, r[1]]
VERIMG $32, R_2, T_0, R_2 // [_, r²[2], _, r[2]]
VERIMG $32, R_3, T_0, R_3 // [_, r²[3], _, r[3]]
VERIMG $32, R_4, T_0, R_4 // [_, r²[4], _, r[4]]
VERIMG $32, R5_1, T_0, R5_1 // [_, 5r²[1], _, 5r[1]]
VERIMG $32, R5_2, T_0, R5_2 // [_, 5r²[2], _, 5r[2]]
VERIMG $32, R5_3, T_0, R5_3 // [_, 5r²[3], _, 5r[3]]
VERIMG $32, R5_4, T_0, R5_4 // [_, 5r²[4], _, 5r[4]]
MOVD $0, R3
BR multiply
skip:
VZERO H_0
VZERO H_1
VZERO H_2
VZERO H_3
VZERO H_4
CMPBEQ R3, $0, finish
b1:
// 1 block remaining
SUB $1, R3
VLL R3, (R2), T_0
ADD $1, R3
b1: // 1 block remaining
// Load the final block (1-16 bytes). This will be placed into
// lane 0.
MOVD $-1(R3), R0
VLL R0, (R2), T_0 // pad to 16 bytes with zeros
// The Poly1305 algorithm requires that a 1 bit be appended to
// each message block. If the final block is less than 16 bytes
// long then it is easiest to insert the 1 before the message
// block is split into 26-bit limbs. If, on the other hand, the
// final message block is 16 bytes long then we append the 1 bit
// after expansion as normal.
MOVBZ $1, R0
CMPBEQ R3, $16, 2(PC)
VLVGB R3, R0, T_0
// Set the message block in lane 1 to the value 0 so that it
// can be accumulated without affecting the final result.
VZERO T_1
EXPAND(T_0, T_1, F_0, F_1, F_2, F_3, F_4)
// Split the final message block into 26-bit limbs in lane 0.
// Lane 1 will be contain 0.
EXPAND(T_0, T_1, M_0, M_1, M_2, M_3, M_4)
// Append a 1 byte to the end of the last block only if it is a
// full 16 byte block.
CMPBNE R3, $16, 2(PC)
VLEIB $4, $1, F_4
VLEIG $1, $1, R_0
VZERO R_1
VZERO R_2
VZERO R_3
VZERO R_4
VZERO R5_1
VZERO R5_2
VZERO R5_3
VZERO R5_4
// setup [r, 1]
VLVGG $0, RSAVE_0, R_0
VLVGG $0, RSAVE_1, R_1
VLVGG $0, RSAVE_2, R_2
VLVGG $0, RSAVE_3, R_3
VLVGG $0, RSAVE_4, R_4
VPDI $0, R5SAVE_1, R5_1, R5_1
VPDI $0, R5SAVE_2, R5_2, R5_2
VPDI $0, R5SAVE_3, R5_3, R5_3
VPDI $0, R5SAVE_4, R5_4, R5_4
VLEIB $4, $1, M_4
// We have previously saved r and 5r in the 32-bit even indexes
// of the R_[0-4] and R5_[1-4] coefficient registers.
//
// We want lane 0 to be multiplied by r so we need to move the
// saved r value into the 32-bit odd index in lane 0. We want
// lane 1 to be set to the value 1. This makes multiplication
// a no-op. We do this by setting lane 1 in every register to 0
// and then just setting the 32-bit index 3 in R_0 to 1.
VZERO T_0
MOVD $0, R0
MOVD $0x10111213, R12
VLVGP R12, R0, T_1 // [_, 0x10111213, _, 0x00000000]
VPERM T_0, R_0, T_1, R_0 // [_, r[0], _, 0]
VPERM T_0, R_1, T_1, R_1 // [_, r[1], _, 0]
VPERM T_0, R_2, T_1, R_2 // [_, r[2], _, 0]
VPERM T_0, R_3, T_1, R_3 // [_, r[3], _, 0]
VPERM T_0, R_4, T_1, R_4 // [_, r[4], _, 0]
VPERM T_0, R5_1, T_1, R5_1 // [_, 5r[1], _, 0]
VPERM T_0, R5_2, T_1, R5_2 // [_, 5r[2], _, 0]
VPERM T_0, R5_3, T_1, R5_3 // [_, 5r[3], _, 0]
VPERM T_0, R5_4, T_1, R5_4 // [_, 5r[4], _, 0]
// Set the value of lane 1 to be 1.
VLEIF $3, $1, R_0 // [_, r[0], _, 1]
MOVD $0, R3
BR multiply

@ -1,909 +0,0 @@
// Copyright 2018 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build go1.11,!gccgo,!purego
#include "textflag.h"
// Implementation of Poly1305 using the vector facility (vx) and the VMSL instruction.
// constants
#define EX0 V1
#define EX1 V2
#define EX2 V3
// temporaries
#define T_0 V4
#define T_1 V5
#define T_2 V6
#define T_3 V7
#define T_4 V8
#define T_5 V9
#define T_6 V10
#define T_7 V11
#define T_8 V12
#define T_9 V13
#define T_10 V14
// r**2 & r**4
#define R_0 V15
#define R_1 V16
#define R_2 V17
#define R5_1 V18
#define R5_2 V19
// key (r)
#define RSAVE_0 R7
#define RSAVE_1 R8
#define RSAVE_2 R9
#define R5SAVE_1 R10
#define R5SAVE_2 R11
// message block
#define M0 V20
#define M1 V21
#define M2 V22
#define M3 V23
#define M4 V24
#define M5 V25
// accumulator
#define H0_0 V26
#define H1_0 V27
#define H2_0 V28
#define H0_1 V29
#define H1_1 V30
#define H2_1 V31
GLOBL ·keyMask<>(SB), RODATA, $16
DATA ·keyMask<>+0(SB)/8, $0xffffff0ffcffff0f
DATA ·keyMask<>+8(SB)/8, $0xfcffff0ffcffff0f
GLOBL ·bswapMask<>(SB), RODATA, $16
DATA ·bswapMask<>+0(SB)/8, $0x0f0e0d0c0b0a0908
DATA ·bswapMask<>+8(SB)/8, $0x0706050403020100
GLOBL ·constants<>(SB), RODATA, $48
// EX0
DATA ·constants<>+0(SB)/8, $0x18191a1b1c1d1e1f
DATA ·constants<>+8(SB)/8, $0x0000050403020100
// EX1
DATA ·constants<>+16(SB)/8, $0x18191a1b1c1d1e1f
DATA ·constants<>+24(SB)/8, $0x00000a0908070605
// EX2
DATA ·constants<>+32(SB)/8, $0x18191a1b1c1d1e1f
DATA ·constants<>+40(SB)/8, $0x0000000f0e0d0c0b
GLOBL ·c<>(SB), RODATA, $48
// EX0
DATA ·c<>+0(SB)/8, $0x0000050403020100
DATA ·c<>+8(SB)/8, $0x0000151413121110
// EX1
DATA ·c<>+16(SB)/8, $0x00000a0908070605
DATA ·c<>+24(SB)/8, $0x00001a1918171615
// EX2
DATA ·c<>+32(SB)/8, $0x0000000f0e0d0c0b
DATA ·c<>+40(SB)/8, $0x0000001f1e1d1c1b
GLOBL ·reduce<>(SB), RODATA, $32
// 44 bit
DATA ·reduce<>+0(SB)/8, $0x0
DATA ·reduce<>+8(SB)/8, $0xfffffffffff
// 42 bit
DATA ·reduce<>+16(SB)/8, $0x0
DATA ·reduce<>+24(SB)/8, $0x3ffffffffff
// h = (f*g) % (2**130-5) [partial reduction]
// uses T_0...T_9 temporary registers
// input: m02_0, m02_1, m02_2, m13_0, m13_1, m13_2, r_0, r_1, r_2, r5_1, r5_2, m4_0, m4_1, m4_2, m5_0, m5_1, m5_2
// temp: t0, t1, t2, t3, t4, t5, t6, t7, t8, t9
// output: m02_0, m02_1, m02_2, m13_0, m13_1, m13_2
#define MULTIPLY(m02_0, m02_1, m02_2, m13_0, m13_1, m13_2, r_0, r_1, r_2, r5_1, r5_2, m4_0, m4_1, m4_2, m5_0, m5_1, m5_2, t0, t1, t2, t3, t4, t5, t6, t7, t8, t9) \
\ // Eliminate the dependency for the last 2 VMSLs
VMSLG m02_0, r_2, m4_2, m4_2 \
VMSLG m13_0, r_2, m5_2, m5_2 \ // 8 VMSLs pipelined
VMSLG m02_0, r_0, m4_0, m4_0 \
VMSLG m02_1, r5_2, V0, T_0 \
VMSLG m02_0, r_1, m4_1, m4_1 \
VMSLG m02_1, r_0, V0, T_1 \
VMSLG m02_1, r_1, V0, T_2 \
VMSLG m02_2, r5_1, V0, T_3 \
VMSLG m02_2, r5_2, V0, T_4 \
VMSLG m13_0, r_0, m5_0, m5_0 \
VMSLG m13_1, r5_2, V0, T_5 \
VMSLG m13_0, r_1, m5_1, m5_1 \
VMSLG m13_1, r_0, V0, T_6 \
VMSLG m13_1, r_1, V0, T_7 \
VMSLG m13_2, r5_1, V0, T_8 \
VMSLG m13_2, r5_2, V0, T_9 \
VMSLG m02_2, r_0, m4_2, m4_2 \
VMSLG m13_2, r_0, m5_2, m5_2 \
VAQ m4_0, T_0, m02_0 \
VAQ m4_1, T_1, m02_1 \
VAQ m5_0, T_5, m13_0 \
VAQ m5_1, T_6, m13_1 \
VAQ m02_0, T_3, m02_0 \
VAQ m02_1, T_4, m02_1 \
VAQ m13_0, T_8, m13_0 \
VAQ m13_1, T_9, m13_1 \
VAQ m4_2, T_2, m02_2 \
VAQ m5_2, T_7, m13_2 \
// SQUARE uses three limbs of r and r_2*5 to output square of r
// uses T_1, T_5 and T_7 temporary registers
// input: r_0, r_1, r_2, r5_2
// temp: TEMP0, TEMP1, TEMP2
// output: p0, p1, p2
#define SQUARE(r_0, r_1, r_2, r5_2, p0, p1, p2, TEMP0, TEMP1, TEMP2) \
VMSLG r_0, r_0, p0, p0 \
VMSLG r_1, r5_2, V0, TEMP0 \
VMSLG r_2, r5_2, p1, p1 \
VMSLG r_0, r_1, V0, TEMP1 \
VMSLG r_1, r_1, p2, p2 \
VMSLG r_0, r_2, V0, TEMP2 \
VAQ TEMP0, p0, p0 \
VAQ TEMP1, p1, p1 \
VAQ TEMP2, p2, p2 \
VAQ TEMP0, p0, p0 \
VAQ TEMP1, p1, p1 \
VAQ TEMP2, p2, p2 \
// carry h0->h1->h2->h0 || h3->h4->h5->h3
// uses T_2, T_4, T_5, T_7, T_8, T_9
// t6, t7, t8, t9, t10, t11
// input: h0, h1, h2, h3, h4, h5
// temp: t0, t1, t2, t3, t4, t5, t6, t7, t8, t9, t10, t11
// output: h0, h1, h2, h3, h4, h5
#define REDUCE(h0, h1, h2, h3, h4, h5, t0, t1, t2, t3, t4, t5, t6, t7, t8, t9, t10, t11) \
VLM (R12), t6, t7 \ // 44 and 42 bit clear mask
VLEIB $7, $0x28, t10 \ // 5 byte shift mask
VREPIB $4, t8 \ // 4 bit shift mask
VREPIB $2, t11 \ // 2 bit shift mask
VSRLB t10, h0, t0 \ // h0 byte shift
VSRLB t10, h1, t1 \ // h1 byte shift
VSRLB t10, h2, t2 \ // h2 byte shift
VSRLB t10, h3, t3 \ // h3 byte shift
VSRLB t10, h4, t4 \ // h4 byte shift
VSRLB t10, h5, t5 \ // h5 byte shift
VSRL t8, t0, t0 \ // h0 bit shift
VSRL t8, t1, t1 \ // h2 bit shift
VSRL t11, t2, t2 \ // h2 bit shift
VSRL t8, t3, t3 \ // h3 bit shift
VSRL t8, t4, t4 \ // h4 bit shift
VESLG $2, t2, t9 \ // h2 carry x5
VSRL t11, t5, t5 \ // h5 bit shift
VN t6, h0, h0 \ // h0 clear carry
VAQ t2, t9, t2 \ // h2 carry x5
VESLG $2, t5, t9 \ // h5 carry x5
VN t6, h1, h1 \ // h1 clear carry
VN t7, h2, h2 \ // h2 clear carry
VAQ t5, t9, t5 \ // h5 carry x5
VN t6, h3, h3 \ // h3 clear carry
VN t6, h4, h4 \ // h4 clear carry
VN t7, h5, h5 \ // h5 clear carry
VAQ t0, h1, h1 \ // h0->h1
VAQ t3, h4, h4 \ // h3->h4
VAQ t1, h2, h2 \ // h1->h2
VAQ t4, h5, h5 \ // h4->h5
VAQ t2, h0, h0 \ // h2->h0
VAQ t5, h3, h3 \ // h5->h3
VREPG $1, t6, t6 \ // 44 and 42 bit masks across both halves
VREPG $1, t7, t7 \
VSLDB $8, h0, h0, h0 \ // set up [h0/1/2, h3/4/5]
VSLDB $8, h1, h1, h1 \
VSLDB $8, h2, h2, h2 \
VO h0, h3, h3 \
VO h1, h4, h4 \
VO h2, h5, h5 \
VESRLG $44, h3, t0 \ // 44 bit shift right
VESRLG $44, h4, t1 \
VESRLG $42, h5, t2 \
VN t6, h3, h3 \ // clear carry bits
VN t6, h4, h4 \
VN t7, h5, h5 \
VESLG $2, t2, t9 \ // multiply carry by 5
VAQ t9, t2, t2 \
VAQ t0, h4, h4 \
VAQ t1, h5, h5 \
VAQ t2, h3, h3 \
// carry h0->h1->h2->h0
// input: h0, h1, h2
// temp: t0, t1, t2, t3, t4, t5, t6, t7, t8
// output: h0, h1, h2
#define REDUCE2(h0, h1, h2, t0, t1, t2, t3, t4, t5, t6, t7, t8) \
VLEIB $7, $0x28, t3 \ // 5 byte shift mask
VREPIB $4, t4 \ // 4 bit shift mask
VREPIB $2, t7 \ // 2 bit shift mask
VGBM $0x003F, t5 \ // mask to clear carry bits
VSRLB t3, h0, t0 \
VSRLB t3, h1, t1 \
VSRLB t3, h2, t2 \
VESRLG $4, t5, t5 \ // 44 bit clear mask
VSRL t4, t0, t0 \
VSRL t4, t1, t1 \
VSRL t7, t2, t2 \
VESRLG $2, t5, t6 \ // 42 bit clear mask
VESLG $2, t2, t8 \
VAQ t8, t2, t2 \
VN t5, h0, h0 \
VN t5, h1, h1 \
VN t6, h2, h2 \
VAQ t0, h1, h1 \
VAQ t1, h2, h2 \
VAQ t2, h0, h0 \
VSRLB t3, h0, t0 \
VSRLB t3, h1, t1 \
VSRLB t3, h2, t2 \
VSRL t4, t0, t0 \
VSRL t4, t1, t1 \
VSRL t7, t2, t2 \
VN t5, h0, h0 \
VN t5, h1, h1 \
VESLG $2, t2, t8 \
VN t6, h2, h2 \
VAQ t0, h1, h1 \
VAQ t8, t2, t2 \
VAQ t1, h2, h2 \
VAQ t2, h0, h0 \
// expands two message blocks into the lower halfs of the d registers
// moves the contents of the d registers into upper halfs
// input: in1, in2, d0, d1, d2, d3, d4, d5
// temp: TEMP0, TEMP1, TEMP2, TEMP3
// output: d0, d1, d2, d3, d4, d5
#define EXPACC(in1, in2, d0, d1, d2, d3, d4, d5, TEMP0, TEMP1, TEMP2, TEMP3) \
VGBM $0xff3f, TEMP0 \
VGBM $0xff1f, TEMP1 \
VESLG $4, d1, TEMP2 \
VESLG $4, d4, TEMP3 \
VESRLG $4, TEMP0, TEMP0 \
VPERM in1, d0, EX0, d0 \
VPERM in2, d3, EX0, d3 \
VPERM in1, d2, EX2, d2 \
VPERM in2, d5, EX2, d5 \
VPERM in1, TEMP2, EX1, d1 \
VPERM in2, TEMP3, EX1, d4 \
VN TEMP0, d0, d0 \
VN TEMP0, d3, d3 \
VESRLG $4, d1, d1 \
VESRLG $4, d4, d4 \
VN TEMP1, d2, d2 \
VN TEMP1, d5, d5 \
VN TEMP0, d1, d1 \
VN TEMP0, d4, d4 \
// expands one message block into the lower halfs of the d registers
// moves the contents of the d registers into upper halfs
// input: in, d0, d1, d2
// temp: TEMP0, TEMP1, TEMP2
// output: d0, d1, d2
#define EXPACC2(in, d0, d1, d2, TEMP0, TEMP1, TEMP2) \
VGBM $0xff3f, TEMP0 \
VESLG $4, d1, TEMP2 \
VGBM $0xff1f, TEMP1 \
VPERM in, d0, EX0, d0 \
VESRLG $4, TEMP0, TEMP0 \
VPERM in, d2, EX2, d2 \
VPERM in, TEMP2, EX1, d1 \
VN TEMP0, d0, d0 \
VN TEMP1, d2, d2 \
VESRLG $4, d1, d1 \
VN TEMP0, d1, d1 \
// pack h2:h0 into h1:h0 (no carry)
// input: h0, h1, h2
// output: h0, h1, h2
#define PACK(h0, h1, h2) \
VMRLG h1, h2, h2 \ // copy h1 to upper half h2
VESLG $44, h1, h1 \ // shift limb 1 44 bits, leaving 20
VO h0, h1, h0 \ // combine h0 with 20 bits from limb 1
VESRLG $20, h2, h1 \ // put top 24 bits of limb 1 into h1
VLEIG $1, $0, h1 \ // clear h2 stuff from lower half of h1
VO h0, h1, h0 \ // h0 now has 88 bits (limb 0 and 1)
VLEIG $0, $0, h2 \ // clear upper half of h2
VESRLG $40, h2, h1 \ // h1 now has upper two bits of result
VLEIB $7, $88, h1 \ // for byte shift (11 bytes)
VSLB h1, h2, h2 \ // shift h2 11 bytes to the left
VO h0, h2, h0 \ // combine h0 with 20 bits from limb 1
VLEIG $0, $0, h1 \ // clear upper half of h1
// if h > 2**130-5 then h -= 2**130-5
// input: h0, h1
// temp: t0, t1, t2
// output: h0
#define MOD(h0, h1, t0, t1, t2) \
VZERO t0 \
VLEIG $1, $5, t0 \
VACCQ h0, t0, t1 \
VAQ h0, t0, t0 \
VONE t2 \
VLEIG $1, $-4, t2 \
VAQ t2, t1, t1 \
VACCQ h1, t1, t1 \
VONE t2 \
VAQ t2, t1, t1 \
VN h0, t1, t2 \
VNC t0, t1, t1 \
VO t1, t2, h0 \
// func poly1305vmsl(out *[16]byte, m *byte, mlen uint64, key *[32]key)
TEXT ·poly1305vmsl(SB), $0-32
// This code processes 6 + up to 4 blocks (32 bytes) per iteration
// using the algorithm described in:
// NEON crypto, Daniel J. Bernstein & Peter Schwabe
// https://cryptojedi.org/papers/neoncrypto-20120320.pdf
// And as moddified for VMSL as described in
// Accelerating Poly1305 Cryptographic Message Authentication on the z14
// O'Farrell et al, CASCON 2017, p48-55
// https://ibm.ent.box.com/s/jf9gedj0e9d2vjctfyh186shaztavnht
LMG out+0(FP), R1, R4 // R1=out, R2=m, R3=mlen, R4=key
VZERO V0 // c
// load EX0, EX1 and EX2
MOVD $·constants<>(SB), R5
VLM (R5), EX0, EX2 // c
// setup r
VL (R4), T_0
MOVD $·keyMask<>(SB), R6
VL (R6), T_1
VN T_0, T_1, T_0
VZERO T_2 // limbs for r
VZERO T_3
VZERO T_4
EXPACC2(T_0, T_2, T_3, T_4, T_1, T_5, T_7)
// T_2, T_3, T_4: [0, r]
// setup r*20
VLEIG $0, $0, T_0
VLEIG $1, $20, T_0 // T_0: [0, 20]
VZERO T_5
VZERO T_6
VMSLG T_0, T_3, T_5, T_5
VMSLG T_0, T_4, T_6, T_6
// store r for final block in GR
VLGVG $1, T_2, RSAVE_0 // c
VLGVG $1, T_3, RSAVE_1 // c
VLGVG $1, T_4, RSAVE_2 // c
VLGVG $1, T_5, R5SAVE_1 // c
VLGVG $1, T_6, R5SAVE_2 // c
// initialize h
VZERO H0_0
VZERO H1_0
VZERO H2_0
VZERO H0_1
VZERO H1_1
VZERO H2_1
// initialize pointer for reduce constants
MOVD $·reduce<>(SB), R12
// calculate r**2 and 20*(r**2)
VZERO R_0
VZERO R_1
VZERO R_2
SQUARE(T_2, T_3, T_4, T_6, R_0, R_1, R_2, T_1, T_5, T_7)
REDUCE2(R_0, R_1, R_2, M0, M1, M2, M3, M4, R5_1, R5_2, M5, T_1)
VZERO R5_1
VZERO R5_2
VMSLG T_0, R_1, R5_1, R5_1
VMSLG T_0, R_2, R5_2, R5_2
// skip r**4 calculation if 3 blocks or less
CMPBLE R3, $48, b4
// calculate r**4 and 20*(r**4)
VZERO T_8
VZERO T_9
VZERO T_10
SQUARE(R_0, R_1, R_2, R5_2, T_8, T_9, T_10, T_1, T_5, T_7)
REDUCE2(T_8, T_9, T_10, M0, M1, M2, M3, M4, T_2, T_3, M5, T_1)
VZERO T_2
VZERO T_3
VMSLG T_0, T_9, T_2, T_2
VMSLG T_0, T_10, T_3, T_3
// put r**2 to the right and r**4 to the left of R_0, R_1, R_2
VSLDB $8, T_8, T_8, T_8
VSLDB $8, T_9, T_9, T_9
VSLDB $8, T_10, T_10, T_10
VSLDB $8, T_2, T_2, T_2
VSLDB $8, T_3, T_3, T_3
VO T_8, R_0, R_0
VO T_9, R_1, R_1
VO T_10, R_2, R_2
VO T_2, R5_1, R5_1
VO T_3, R5_2, R5_2
CMPBLE R3, $80, load // less than or equal to 5 blocks in message
// 6(or 5+1) blocks
SUB $81, R3
VLM (R2), M0, M4
VLL R3, 80(R2), M5
ADD $1, R3
MOVBZ $1, R0
CMPBGE R3, $16, 2(PC)
VLVGB R3, R0, M5
MOVD $96(R2), R2
EXPACC(M0, M1, H0_0, H1_0, H2_0, H0_1, H1_1, H2_1, T_0, T_1, T_2, T_3)
EXPACC(M2, M3, H0_0, H1_0, H2_0, H0_1, H1_1, H2_1, T_0, T_1, T_2, T_3)
VLEIB $2, $1, H2_0
VLEIB $2, $1, H2_1
VLEIB $10, $1, H2_0
VLEIB $10, $1, H2_1
VZERO M0
VZERO M1
VZERO M2
VZERO M3
VZERO T_4
VZERO T_10
EXPACC(M4, M5, M0, M1, M2, M3, T_4, T_10, T_0, T_1, T_2, T_3)
VLR T_4, M4
VLEIB $10, $1, M2
CMPBLT R3, $16, 2(PC)
VLEIB $10, $1, T_10
MULTIPLY(H0_0, H1_0, H2_0, H0_1, H1_1, H2_1, R_0, R_1, R_2, R5_1, R5_2, M0, M1, M2, M3, M4, T_10, T_0, T_1, T_2, T_3, T_4, T_5, T_6, T_7, T_8, T_9)
REDUCE(H0_0, H1_0, H2_0, H0_1, H1_1, H2_1, T_10, M0, M1, M2, M3, M4, T_4, T_5, T_2, T_7, T_8, T_9)
VMRHG V0, H0_1, H0_0
VMRHG V0, H1_1, H1_0
VMRHG V0, H2_1, H2_0
VMRLG V0, H0_1, H0_1
VMRLG V0, H1_1, H1_1
VMRLG V0, H2_1, H2_1
SUB $16, R3
CMPBLE R3, $0, square
load:
// load EX0, EX1 and EX2
MOVD $·c<>(SB), R5
VLM (R5), EX0, EX2
loop:
CMPBLE R3, $64, add // b4 // last 4 or less blocks left
// next 4 full blocks
VLM (R2), M2, M5
SUB $64, R3
MOVD $64(R2), R2
REDUCE(H0_0, H1_0, H2_0, H0_1, H1_1, H2_1, T_10, M0, M1, T_0, T_1, T_3, T_4, T_5, T_2, T_7, T_8, T_9)
// expacc in-lined to create [m2, m3] limbs
VGBM $0x3f3f, T_0 // 44 bit clear mask
VGBM $0x1f1f, T_1 // 40 bit clear mask
VPERM M2, M3, EX0, T_3
VESRLG $4, T_0, T_0 // 44 bit clear mask ready
VPERM M2, M3, EX1, T_4
VPERM M2, M3, EX2, T_5
VN T_0, T_3, T_3
VESRLG $4, T_4, T_4
VN T_1, T_5, T_5
VN T_0, T_4, T_4
VMRHG H0_1, T_3, H0_0
VMRHG H1_1, T_4, H1_0
VMRHG H2_1, T_5, H2_0
VMRLG H0_1, T_3, H0_1
VMRLG H1_1, T_4, H1_1
VMRLG H2_1, T_5, H2_1
VLEIB $10, $1, H2_0
VLEIB $10, $1, H2_1
VPERM M4, M5, EX0, T_3
VPERM M4, M5, EX1, T_4
VPERM M4, M5, EX2, T_5
VN T_0, T_3, T_3
VESRLG $4, T_4, T_4
VN T_1, T_5, T_5
VN T_0, T_4, T_4
VMRHG V0, T_3, M0
VMRHG V0, T_4, M1
VMRHG V0, T_5, M2
VMRLG V0, T_3, M3
VMRLG V0, T_4, M4
VMRLG V0, T_5, M5
VLEIB $10, $1, M2
VLEIB $10, $1, M5
MULTIPLY(H0_0, H1_0, H2_0, H0_1, H1_1, H2_1, R_0, R_1, R_2, R5_1, R5_2, M0, M1, M2, M3, M4, M5, T_0, T_1, T_2, T_3, T_4, T_5, T_6, T_7, T_8, T_9)
CMPBNE R3, $0, loop
REDUCE(H0_0, H1_0, H2_0, H0_1, H1_1, H2_1, T_10, M0, M1, M3, M4, M5, T_4, T_5, T_2, T_7, T_8, T_9)
VMRHG V0, H0_1, H0_0
VMRHG V0, H1_1, H1_0
VMRHG V0, H2_1, H2_0
VMRLG V0, H0_1, H0_1
VMRLG V0, H1_1, H1_1
VMRLG V0, H2_1, H2_1
// load EX0, EX1, EX2
MOVD $·constants<>(SB), R5
VLM (R5), EX0, EX2
// sum vectors
VAQ H0_0, H0_1, H0_0
VAQ H1_0, H1_1, H1_0
VAQ H2_0, H2_1, H2_0
// h may be >= 2*(2**130-5) so we need to reduce it again
// M0...M4 are used as temps here
REDUCE2(H0_0, H1_0, H2_0, M0, M1, M2, M3, M4, T_9, T_10, H0_1, M5)
next: // carry h1->h2
VLEIB $7, $0x28, T_1
VREPIB $4, T_2
VGBM $0x003F, T_3
VESRLG $4, T_3
// byte shift
VSRLB T_1, H1_0, T_4
// bit shift
VSRL T_2, T_4, T_4
// clear h1 carry bits
VN T_3, H1_0, H1_0
// add carry
VAQ T_4, H2_0, H2_0
// h is now < 2*(2**130-5)
// pack h into h1 (hi) and h0 (lo)
PACK(H0_0, H1_0, H2_0)
// if h > 2**130-5 then h -= 2**130-5
MOD(H0_0, H1_0, T_0, T_1, T_2)
// h += s
MOVD $·bswapMask<>(SB), R5
VL (R5), T_1
VL 16(R4), T_0
VPERM T_0, T_0, T_1, T_0 // reverse bytes (to big)
VAQ T_0, H0_0, H0_0
VPERM H0_0, H0_0, T_1, H0_0 // reverse bytes (to little)
VST H0_0, (R1)
RET
add:
// load EX0, EX1, EX2
MOVD $·constants<>(SB), R5
VLM (R5), EX0, EX2
REDUCE(H0_0, H1_0, H2_0, H0_1, H1_1, H2_1, T_10, M0, M1, M3, M4, M5, T_4, T_5, T_2, T_7, T_8, T_9)
VMRHG V0, H0_1, H0_0
VMRHG V0, H1_1, H1_0
VMRHG V0, H2_1, H2_0
VMRLG V0, H0_1, H0_1
VMRLG V0, H1_1, H1_1
VMRLG V0, H2_1, H2_1
CMPBLE R3, $64, b4
b4:
CMPBLE R3, $48, b3 // 3 blocks or less
// 4(3+1) blocks remaining
SUB $49, R3
VLM (R2), M0, M2
VLL R3, 48(R2), M3
ADD $1, R3
MOVBZ $1, R0
CMPBEQ R3, $16, 2(PC)
VLVGB R3, R0, M3
MOVD $64(R2), R2
EXPACC(M0, M1, H0_0, H1_0, H2_0, H0_1, H1_1, H2_1, T_0, T_1, T_2, T_3)
VLEIB $10, $1, H2_0
VLEIB $10, $1, H2_1
VZERO M0
VZERO M1
VZERO M4
VZERO M5
VZERO T_4
VZERO T_10
EXPACC(M2, M3, M0, M1, M4, M5, T_4, T_10, T_0, T_1, T_2, T_3)
VLR T_4, M2
VLEIB $10, $1, M4
CMPBNE R3, $16, 2(PC)
VLEIB $10, $1, T_10
MULTIPLY(H0_0, H1_0, H2_0, H0_1, H1_1, H2_1, R_0, R_1, R_2, R5_1, R5_2, M0, M1, M4, M5, M2, T_10, T_0, T_1, T_2, T_3, T_4, T_5, T_6, T_7, T_8, T_9)
REDUCE(H0_0, H1_0, H2_0, H0_1, H1_1, H2_1, T_10, M0, M1, M3, M4, M5, T_4, T_5, T_2, T_7, T_8, T_9)
VMRHG V0, H0_1, H0_0
VMRHG V0, H1_1, H1_0
VMRHG V0, H2_1, H2_0
VMRLG V0, H0_1, H0_1
VMRLG V0, H1_1, H1_1
VMRLG V0, H2_1, H2_1
SUB $16, R3
CMPBLE R3, $0, square // this condition must always hold true!
b3:
CMPBLE R3, $32, b2
// 3 blocks remaining
// setup [r²,r]
VSLDB $8, R_0, R_0, R_0
VSLDB $8, R_1, R_1, R_1
VSLDB $8, R_2, R_2, R_2
VSLDB $8, R5_1, R5_1, R5_1
VSLDB $8, R5_2, R5_2, R5_2
VLVGG $1, RSAVE_0, R_0
VLVGG $1, RSAVE_1, R_1
VLVGG $1, RSAVE_2, R_2
VLVGG $1, R5SAVE_1, R5_1
VLVGG $1, R5SAVE_2, R5_2
// setup [h0, h1]
VSLDB $8, H0_0, H0_0, H0_0
VSLDB $8, H1_0, H1_0, H1_0
VSLDB $8, H2_0, H2_0, H2_0
VO H0_1, H0_0, H0_0
VO H1_1, H1_0, H1_0
VO H2_1, H2_0, H2_0
VZERO H0_1
VZERO H1_1
VZERO H2_1
VZERO M0
VZERO M1
VZERO M2
VZERO M3
VZERO M4
VZERO M5
// H*[r**2, r]
MULTIPLY(H0_0, H1_0, H2_0, H0_1, H1_1, H2_1, R_0, R_1, R_2, R5_1, R5_2, M0, M1, M2, M3, M4, M5, T_0, T_1, T_2, T_3, T_4, T_5, T_6, T_7, T_8, T_9)
REDUCE2(H0_0, H1_0, H2_0, M0, M1, M2, M3, M4, H0_1, H1_1, T_10, M5)
SUB $33, R3
VLM (R2), M0, M1
VLL R3, 32(R2), M2
ADD $1, R3
MOVBZ $1, R0
CMPBEQ R3, $16, 2(PC)
VLVGB R3, R0, M2
// H += m0
VZERO T_1
VZERO T_2
VZERO T_3
EXPACC2(M0, T_1, T_2, T_3, T_4, T_5, T_6)
VLEIB $10, $1, T_3
VAG H0_0, T_1, H0_0
VAG H1_0, T_2, H1_0
VAG H2_0, T_3, H2_0
VZERO M0
VZERO M3
VZERO M4
VZERO M5
VZERO T_10
// (H+m0)*r
MULTIPLY(H0_0, H1_0, H2_0, H0_1, H1_1, H2_1, R_0, R_1, R_2, R5_1, R5_2, M0, M3, M4, M5, V0, T_10, T_0, T_1, T_2, T_3, T_4, T_5, T_6, T_7, T_8, T_9)
REDUCE2(H0_0, H1_0, H2_0, M0, M3, M4, M5, T_10, H0_1, H1_1, H2_1, T_9)
// H += m1
VZERO V0
VZERO T_1
VZERO T_2
VZERO T_3
EXPACC2(M1, T_1, T_2, T_3, T_4, T_5, T_6)
VLEIB $10, $1, T_3
VAQ H0_0, T_1, H0_0
VAQ H1_0, T_2, H1_0
VAQ H2_0, T_3, H2_0
REDUCE2(H0_0, H1_0, H2_0, M0, M3, M4, M5, T_9, H0_1, H1_1, H2_1, T_10)
// [H, m2] * [r**2, r]
EXPACC2(M2, H0_0, H1_0, H2_0, T_1, T_2, T_3)
CMPBNE R3, $16, 2(PC)
VLEIB $10, $1, H2_0
VZERO M0
VZERO M1
VZERO M2
VZERO M3
VZERO M4
VZERO M5
MULTIPLY(H0_0, H1_0, H2_0, H0_1, H1_1, H2_1, R_0, R_1, R_2, R5_1, R5_2, M0, M1, M2, M3, M4, M5, T_0, T_1, T_2, T_3, T_4, T_5, T_6, T_7, T_8, T_9)
REDUCE2(H0_0, H1_0, H2_0, M0, M1, M2, M3, M4, H0_1, H1_1, M5, T_10)
SUB $16, R3
CMPBLE R3, $0, next // this condition must always hold true!
b2:
CMPBLE R3, $16, b1
// 2 blocks remaining
// setup [r²,r]
VSLDB $8, R_0, R_0, R_0
VSLDB $8, R_1, R_1, R_1
VSLDB $8, R_2, R_2, R_2
VSLDB $8, R5_1, R5_1, R5_1
VSLDB $8, R5_2, R5_2, R5_2
VLVGG $1, RSAVE_0, R_0
VLVGG $1, RSAVE_1, R_1
VLVGG $1, RSAVE_2, R_2
VLVGG $1, R5SAVE_1, R5_1
VLVGG $1, R5SAVE_2, R5_2
// setup [h0, h1]
VSLDB $8, H0_0, H0_0, H0_0
VSLDB $8, H1_0, H1_0, H1_0
VSLDB $8, H2_0, H2_0, H2_0
VO H0_1, H0_0, H0_0
VO H1_1, H1_0, H1_0
VO H2_1, H2_0, H2_0
VZERO H0_1
VZERO H1_1
VZERO H2_1
VZERO M0
VZERO M1
VZERO M2
VZERO M3
VZERO M4
VZERO M5
// H*[r**2, r]
MULTIPLY(H0_0, H1_0, H2_0, H0_1, H1_1, H2_1, R_0, R_1, R_2, R5_1, R5_2, M0, M1, M2, M3, M4, M5, T_0, T_1, T_2, T_3, T_4, T_5, T_6, T_7, T_8, T_9)
REDUCE(H0_0, H1_0, H2_0, H0_1, H1_1, H2_1, T_10, M0, M1, M2, M3, M4, T_4, T_5, T_2, T_7, T_8, T_9)
VMRHG V0, H0_1, H0_0
VMRHG V0, H1_1, H1_0
VMRHG V0, H2_1, H2_0
VMRLG V0, H0_1, H0_1
VMRLG V0, H1_1, H1_1
VMRLG V0, H2_1, H2_1
// move h to the left and 0s at the right
VSLDB $8, H0_0, H0_0, H0_0
VSLDB $8, H1_0, H1_0, H1_0
VSLDB $8, H2_0, H2_0, H2_0
// get message blocks and append 1 to start
SUB $17, R3
VL (R2), M0
VLL R3, 16(R2), M1
ADD $1, R3
MOVBZ $1, R0
CMPBEQ R3, $16, 2(PC)
VLVGB R3, R0, M1
VZERO T_6
VZERO T_7
VZERO T_8
EXPACC2(M0, T_6, T_7, T_8, T_1, T_2, T_3)
EXPACC2(M1, T_6, T_7, T_8, T_1, T_2, T_3)
VLEIB $2, $1, T_8
CMPBNE R3, $16, 2(PC)
VLEIB $10, $1, T_8
// add [m0, m1] to h
VAG H0_0, T_6, H0_0
VAG H1_0, T_7, H1_0
VAG H2_0, T_8, H2_0
VZERO M2
VZERO M3
VZERO M4
VZERO M5
VZERO T_10
VZERO M0
// at this point R_0 .. R5_2 look like [r**2, r]
MULTIPLY(H0_0, H1_0, H2_0, H0_1, H1_1, H2_1, R_0, R_1, R_2, R5_1, R5_2, M2, M3, M4, M5, T_10, M0, T_0, T_1, T_2, T_3, T_4, T_5, T_6, T_7, T_8, T_9)
REDUCE2(H0_0, H1_0, H2_0, M2, M3, M4, M5, T_9, H0_1, H1_1, H2_1, T_10)
SUB $16, R3, R3
CMPBLE R3, $0, next
b1:
CMPBLE R3, $0, next
// 1 block remaining
// setup [r²,r]
VSLDB $8, R_0, R_0, R_0
VSLDB $8, R_1, R_1, R_1
VSLDB $8, R_2, R_2, R_2
VSLDB $8, R5_1, R5_1, R5_1
VSLDB $8, R5_2, R5_2, R5_2
VLVGG $1, RSAVE_0, R_0
VLVGG $1, RSAVE_1, R_1
VLVGG $1, RSAVE_2, R_2
VLVGG $1, R5SAVE_1, R5_1
VLVGG $1, R5SAVE_2, R5_2
// setup [h0, h1]
VSLDB $8, H0_0, H0_0, H0_0
VSLDB $8, H1_0, H1_0, H1_0
VSLDB $8, H2_0, H2_0, H2_0
VO H0_1, H0_0, H0_0
VO H1_1, H1_0, H1_0
VO H2_1, H2_0, H2_0
VZERO H0_1
VZERO H1_1
VZERO H2_1
VZERO M0
VZERO M1
VZERO M2
VZERO M3
VZERO M4
VZERO M5
// H*[r**2, r]
MULTIPLY(H0_0, H1_0, H2_0, H0_1, H1_1, H2_1, R_0, R_1, R_2, R5_1, R5_2, M0, M1, M2, M3, M4, M5, T_0, T_1, T_2, T_3, T_4, T_5, T_6, T_7, T_8, T_9)
REDUCE2(H0_0, H1_0, H2_0, M0, M1, M2, M3, M4, T_9, T_10, H0_1, M5)
// set up [0, m0] limbs
SUB $1, R3
VLL R3, (R2), M0
ADD $1, R3
MOVBZ $1, R0
CMPBEQ R3, $16, 2(PC)
VLVGB R3, R0, M0
VZERO T_1
VZERO T_2
VZERO T_3
EXPACC2(M0, T_1, T_2, T_3, T_4, T_5, T_6)// limbs: [0, m]
CMPBNE R3, $16, 2(PC)
VLEIB $10, $1, T_3
// h+m0
VAQ H0_0, T_1, H0_0
VAQ H1_0, T_2, H1_0
VAQ H2_0, T_3, H2_0
VZERO M0
VZERO M1
VZERO M2
VZERO M3
VZERO M4
VZERO M5
MULTIPLY(H0_0, H1_0, H2_0, H0_1, H1_1, H2_1, R_0, R_1, R_2, R5_1, R5_2, M0, M1, M2, M3, M4, M5, T_0, T_1, T_2, T_3, T_4, T_5, T_6, T_7, T_8, T_9)
REDUCE2(H0_0, H1_0, H2_0, M0, M1, M2, M3, M4, T_9, T_10, H0_1, M5)
BR next
square:
// setup [r²,r]
VSLDB $8, R_0, R_0, R_0
VSLDB $8, R_1, R_1, R_1
VSLDB $8, R_2, R_2, R_2
VSLDB $8, R5_1, R5_1, R5_1
VSLDB $8, R5_2, R5_2, R5_2
VLVGG $1, RSAVE_0, R_0
VLVGG $1, RSAVE_1, R_1
VLVGG $1, RSAVE_2, R_2
VLVGG $1, R5SAVE_1, R5_1
VLVGG $1, R5SAVE_2, R5_2
// setup [h0, h1]
VSLDB $8, H0_0, H0_0, H0_0
VSLDB $8, H1_0, H1_0, H1_0
VSLDB $8, H2_0, H2_0, H2_0
VO H0_1, H0_0, H0_0
VO H1_1, H1_0, H1_0
VO H2_1, H2_0, H2_0
VZERO H0_1
VZERO H1_1
VZERO H2_1
VZERO M0
VZERO M1
VZERO M2
VZERO M3
VZERO M4
VZERO M5
// (h0*r**2) + (h1*r)
MULTIPLY(H0_0, H1_0, H2_0, H0_1, H1_1, H2_1, R_0, R_1, R_2, R5_1, R5_2, M0, M1, M2, M3, M4, M5, T_0, T_1, T_2, T_3, T_4, T_5, T_6, T_7, T_8, T_9)
REDUCE2(H0_0, H1_0, H2_0, M0, M1, M2, M3, M4, T_9, T_10, H0_1, M5)
BR next

@ -102,8 +102,9 @@ type ConstraintExtension struct {
// AddedKey describes an SSH key to be added to an Agent.
type AddedKey struct {
// PrivateKey must be a *rsa.PrivateKey, *dsa.PrivateKey or
// *ecdsa.PrivateKey, which will be inserted into the agent.
// PrivateKey must be a *rsa.PrivateKey, *dsa.PrivateKey,
// ed25519.PrivateKey or *ecdsa.PrivateKey, which will be inserted into the
// agent.
PrivateKey interface{}
// Certificate, if not nil, is communicated to the agent and will be
// stored with the key.
@ -566,6 +567,17 @@ func (c *client) insertKey(s interface{}, comment string, constraints []byte) er
Comments: comment,
Constraints: constraints,
})
case ed25519.PrivateKey:
req = ssh.Marshal(ed25519KeyMsg{
Type: ssh.KeyAlgoED25519,
Pub: []byte(k)[32:],
Priv: []byte(k),
Comments: comment,
Constraints: constraints,
})
// This function originally supported only *ed25519.PrivateKey, however the
// general idiom is to pass ed25519.PrivateKey by value, not by pointer.
// We still support the pointer variant for backwards compatibility.
case *ed25519.PrivateKey:
req = ssh.Marshal(ed25519KeyMsg{
Type: ssh.KeyAlgoED25519,
@ -683,6 +695,18 @@ func (c *client) insertCert(s interface{}, cert *ssh.Certificate, comment string
Comments: comment,
Constraints: constraints,
})
case ed25519.PrivateKey:
req = ssh.Marshal(ed25519CertMsg{
Type: cert.Type(),
CertBytes: cert.Marshal(),
Pub: []byte(k)[32:],
Priv: []byte(k),
Comments: comment,
Constraints: constraints,
})
// This function originally supported only *ed25519.PrivateKey, however the
// general idiom is to pass ed25519.PrivateKey by value, not by pointer.
// We still support the pointer variant for backwards compatibility.
case *ed25519.PrivateKey:
req = ssh.Marshal(ed25519CertMsg{
Type: cert.Type(),

@ -414,8 +414,8 @@ func (c *CertChecker) CheckCert(principal string, cert *Certificate) error {
return nil
}
// SignCert sets c.SignatureKey to the authority's public key and stores a
// Signature, by authority, in the certificate.
// SignCert signs the certificate with an authority, setting the Nonce,
// SignatureKey, and Signature fields.
func (c *Certificate) SignCert(rand io.Reader, authority Signer) error {
c.Nonce = make([]byte, 32)
if _, err := io.ReadFull(rand, c.Nonce); err != nil {

@ -119,7 +119,7 @@ var cipherModes = map[string]*cipherMode{
chacha20Poly1305ID: {64, 0, newChaCha20Cipher},
// CBC mode is insecure and so is not included in the default config.
// (See http://www.isg.rhul.ac.uk/~kp/SandPfinal.pdf). If absolutely
// (See https://www.ieee-security.org/TC/SP2013/papers/4977a526.pdf). If absolutely
// needed, it's possible to specify a custom Config to enable it.
// You should expect that an active attacker can recover plaintext if
// you do.

@ -572,7 +572,7 @@ func (gex *dhGEXSHA) diffieHellman(theirPublic, myPrivate *big.Int) (*big.Int, e
return new(big.Int).Exp(theirPublic, myPrivate, gex.p), nil
}
func (gex *dhGEXSHA) Client(c packetConn, randSource io.Reader, magics *handshakeMagics) (*kexResult, error) {
func (gex dhGEXSHA) Client(c packetConn, randSource io.Reader, magics *handshakeMagics) (*kexResult, error) {
// Send GexRequest
kexDHGexRequest := kexDHGexRequestMsg{
MinBits: dhGroupExchangeMinimumBits,
@ -677,7 +677,7 @@ func (gex *dhGEXSHA) Client(c packetConn, randSource io.Reader, magics *handshak
// Server half implementation of the Diffie Hellman Key Exchange with SHA1 and SHA256.
//
// This is a minimal implementation to satisfy the automated tests.
func (gex *dhGEXSHA) Server(c packetConn, randSource io.Reader, magics *handshakeMagics, priv Signer) (result *kexResult, err error) {
func (gex dhGEXSHA) Server(c packetConn, randSource io.Reader, magics *handshakeMagics, priv Signer) (result *kexResult, err error) {
// Receive GexRequest
packet, err := c.readPacket()
if err != nil {

@ -1246,15 +1246,23 @@ func passphraseProtectedOpenSSHKey(passphrase []byte) openSSHDecryptFunc {
}
key, iv := k[:32], k[32:]
if cipherName != "aes256-ctr" {
return nil, fmt.Errorf("ssh: unknown cipher %q, only supports %q", cipherName, "aes256-ctr")
}
c, err := aes.NewCipher(key)
if err != nil {
return nil, err
}
switch cipherName {
case "aes256-ctr":
ctr := cipher.NewCTR(c, iv)
ctr.XORKeyStream(privKeyBlock, privKeyBlock)
case "aes256-cbc":
if len(privKeyBlock)%c.BlockSize() != 0 {
return nil, fmt.Errorf("ssh: invalid encrypted private key length, not a multiple of the block size")
}
cbc := cipher.NewCBCDecrypter(c, iv)
cbc.CryptBlocks(privKeyBlock, privKeyBlock)
default:
return nil, fmt.Errorf("ssh: unknown cipher %q, only supports %q or %q", cipherName, "aes256-ctr", "aes256-cbc")
}
return privKeyBlock, nil
}

@ -158,7 +158,7 @@ github.com/couchbaselabs/go-couchbase
## explicit
# github.com/davecgh/go-spew v1.1.1
github.com/davecgh/go-spew/spew
# github.com/denisenkom/go-mssqldb v0.0.0-20191128021309-1d7a30a10f73
# github.com/denisenkom/go-mssqldb v0.0.0-20200428022330-06a60b6afbbc
## explicit
github.com/denisenkom/go-mssqldb
github.com/denisenkom/go-mssqldb/internal/cp
@ -670,7 +670,7 @@ go.mongodb.org/mongo-driver/bson/bsonrw
go.mongodb.org/mongo-driver/bson/bsontype
go.mongodb.org/mongo-driver/bson/primitive
go.mongodb.org/mongo-driver/x/bsonx/bsoncore
# golang.org/x/crypto v0.0.0-20200302210943-78000ba7a073
# golang.org/x/crypto v0.0.0-20200429183012-4b2356b1ed79
## explicit
golang.org/x/crypto/acme
golang.org/x/crypto/acme/autocert

Loading…
Cancel
Save