// Copyright (C) 2013-2018 by Maxim Bublis // // Permission is hereby granted, free of charge, to any person obtaining // a copy of this software and associated documentation files (the // "Software"), to deal in the Software without restriction, including // without limitation the rights to use, copy, modify, merge, publish, // distribute, sublicense, and/or sell copies of the Software, and to // permit persons to whom the Software is furnished to do so, subject to // the following conditions: // // The above copyright notice and this permission notice shall be // included in all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, // EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF // MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND // NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE // LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION // OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION // WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. package uuid import ( "crypto/md5" "crypto/rand" "crypto/sha1" "encoding/binary" "hash" "net" "os" "sync" "time" ) // Difference in 100-nanosecond intervals between // UUID epoch (October 15, 1582) and Unix epoch (January 1, 1970). const epochStart = 122192928000000000 var ( global = newDefaultGenerator() epochFunc = unixTimeFunc posixUID = uint32(os.Getuid()) posixGID = uint32(os.Getgid()) ) // NewV1 returns UUID based on current timestamp and MAC address. func NewV1() UUID { return global.NewV1() } // NewV2 returns DCE Security UUID based on POSIX UID/GID. func NewV2(domain byte) UUID { return global.NewV2(domain) } // NewV3 returns UUID based on MD5 hash of namespace UUID and name. func NewV3(ns UUID, name string) UUID { return global.NewV3(ns, name) } // NewV4 returns random generated UUID. func NewV4() UUID { return global.NewV4() } // NewV5 returns UUID based on SHA-1 hash of namespace UUID and name. func NewV5(ns UUID, name string) UUID { return global.NewV5(ns, name) } // Generator provides interface for generating UUIDs. type Generator interface { NewV1() UUID NewV2(domain byte) UUID NewV3(ns UUID, name string) UUID NewV4() UUID NewV5(ns UUID, name string) UUID } // Default generator implementation. type generator struct { storageOnce sync.Once storageMutex sync.Mutex lastTime uint64 clockSequence uint16 hardwareAddr [6]byte } func newDefaultGenerator() Generator { return &generator{} } // NewV1 returns UUID based on current timestamp and MAC address. func (g *generator) NewV1() UUID { u := UUID{} timeNow, clockSeq, hardwareAddr := g.getStorage() binary.BigEndian.PutUint32(u[0:], uint32(timeNow)) binary.BigEndian.PutUint16(u[4:], uint16(timeNow>>32)) binary.BigEndian.PutUint16(u[6:], uint16(timeNow>>48)) binary.BigEndian.PutUint16(u[8:], clockSeq) copy(u[10:], hardwareAddr) u.SetVersion(V1) u.SetVariant(VariantRFC4122) return u } // NewV2 returns DCE Security UUID based on POSIX UID/GID. func (g *generator) NewV2(domain byte) UUID { u := UUID{} timeNow, clockSeq, hardwareAddr := g.getStorage() switch domain { case DomainPerson: binary.BigEndian.PutUint32(u[0:], posixUID) case DomainGroup: binary.BigEndian.PutUint32(u[0:], posixGID) } binary.BigEndian.PutUint16(u[4:], uint16(timeNow>>32)) binary.BigEndian.PutUint16(u[6:], uint16(timeNow>>48)) binary.BigEndian.PutUint16(u[8:], clockSeq) u[9] = domain copy(u[10:], hardwareAddr) u.SetVersion(V2) u.SetVariant(VariantRFC4122) return u } // NewV3 returns UUID based on MD5 hash of namespace UUID and name. func (g *generator) NewV3(ns UUID, name string) UUID { u := newFromHash(md5.New(), ns, name) u.SetVersion(V3) u.SetVariant(VariantRFC4122) return u } // NewV4 returns random generated UUID. func (g *generator) NewV4() UUID { u := UUID{} g.safeRandom(u[:]) u.SetVersion(V4) u.SetVariant(VariantRFC4122) return u } // NewV5 returns UUID based on SHA-1 hash of namespace UUID and name. func (g *generator) NewV5(ns UUID, name string) UUID { u := newFromHash(sha1.New(), ns, name) u.SetVersion(V5) u.SetVariant(VariantRFC4122) return u } func (g *generator) initStorage() { g.initClockSequence() g.initHardwareAddr() } func (g *generator) initClockSequence() { buf := make([]byte, 2) g.safeRandom(buf) g.clockSequence = binary.BigEndian.Uint16(buf) } func (g *generator) initHardwareAddr() { interfaces, err := net.Interfaces() if err == nil { for _, iface := range interfaces { if len(iface.HardwareAddr) >= 6 { copy(g.hardwareAddr[:], iface.HardwareAddr) return } } } // Initialize hardwareAddr randomly in case // of real network interfaces absence g.safeRandom(g.hardwareAddr[:]) // Set multicast bit as recommended in RFC 4122 g.hardwareAddr[0] |= 0x01 } func (g *generator) safeRandom(dest []byte) { if _, err := rand.Read(dest); err != nil { panic(err) } } // Returns UUID v1/v2 storage state. // Returns epoch timestamp, clock sequence, and hardware address. func (g *generator) getStorage() (uint64, uint16, []byte) { g.storageOnce.Do(g.initStorage) g.storageMutex.Lock() defer g.storageMutex.Unlock() timeNow := epochFunc() // Clock changed backwards since last UUID generation. // Should increase clock sequence. if timeNow <= g.lastTime { g.clockSequence++ } g.lastTime = timeNow return timeNow, g.clockSequence, g.hardwareAddr[:] } // Returns difference in 100-nanosecond intervals between // UUID epoch (October 15, 1582) and current time. // This is default epoch calculation function. func unixTimeFunc() uint64 { return epochStart + uint64(time.Now().UnixNano()/100) } // Returns UUID based on hashing of namespace UUID and name. func newFromHash(h hash.Hash, ns UUID, name string) UUID { u := UUID{} h.Write(ns[:]) h.Write([]byte(name)) copy(u[:], h.Sum(nil)) return u }